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ABSTRACT

Numerical solutions of supersonic viscous flows are studied by applying an

implicit time-dependent scheme to the thin-layer Navier-Stokes(TLNS) equations.

The alternating direction implicit(ADI) scheme is first formulated to solve transonic

viscous axisymmetric flows in two dimensions. The results indicate that the AD!

scheme is not efficient enough for supersonic viscous calculations.

Accordingly, aspatial discretization scheme using upwind flux-vector split dif-

ferencing in the streaznwise direction and central differencing in the cross-stream

direction is chosen. Three approximate factorization schemes and one fully implicit

direct solver are considered. Of them, the diagonally dominant ADI(DDADI) and

the parabolized ADI are found to be much faster than the standard AD! procedure.

The optimum CFL number for the DDADI method is about 5000 and it providts

competitive convergence with direct solvers. In terms of CPU time requirements,

the parabolized ADI procedure is as fast as the DDADI method.

ýiThese numerical algorithms are appliedto solve supersonic flows through coni-

cal and high expansion ratio contoured nozzles for different Reynoids numbers, wall

temperatures, and back pressures. Proper downstream boundary conditions for the

subsonic portion of the outflow are shown to allow variations of the boundary layer

thickness at the exit plane and recirculating separated flows for sufficiently high

back pressure. Excellent global mass conseivations are demonstrated by using the

fully conservative form, while quasi-conservative formulations lead to unacrepilably

large mass conservation errors.

Along with the investigations of Navier-Stkes algorithins, paraboiized Navier-

Stokes(PNS) procedures are also studied. The PNS al•c 'ihms are devised from

generalized flux split TLNS equations which include both the traditional pressure

gradient split procedure and a characteristics split system. Comparisons with TLNS
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results show that the characteristics-based PNS system gives results that are as

accurate s'pressure-gradient-split PNS procedures. The use of a safety factor in

the pressure gradient splitting is shown to cause inaccuracies ane should be avoided.

The global pressure iteration for the PNS algorithm is interpreted as an

alternating-direction procedure for the TLNS equations. This global procedure

'; is shown to be mathematically well-posed and numerically efficient.

SSwirling viscous flows in transonic and supersonic propulsive nozzles have been

investigated numerically, The central-difference ADI and the flux-vector split algo-

rithms are utilized to solve the thin-layer Navier-Stokes equations for axisymmetric

two-dimensional flow with swirl. The effects of swirl on viscous flow are studied for

tPozzles with mild to high expansion ratios. Both flowfleld detail and integral nozzle

performance are compared to previously published inviscid calculations. The results

show that the presence of swirl has a significant effect on the flowfleld and integral

nozzle performance, especially for plug nozzle and high expansion ratio nozzles.

Finally, _he algorithms developed for axisymmetric two-dimensional flows are

extended to solve the three-dimensional TLNS equations, The algorithms are based

upon DDADI splitting for the streamwise flux vector and additional approximate

factorization of the operators on the cross-stream plane. The optimum CFL number

reduces to the order of 10 and it gives slower convergence as compared tr corre-

sponding two-dimensional algorithms due to the approximate factorization error.
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CHAPTER 1

INTRODUCTION

Recent interest in the aerospace plane and hypersonic vehicles has revitalized

research on high-speed propulsion systems. In the design of a propulsion system,

accurate prediction of viscous supersonic flowfields together with certain physical

parameters such as thrust play a critical role. Traditionally, these parameters are

obtained from wind tunnel tests or simplified analytical models. The analytical

approach is only valid for very simple geometries and flow conditions due to the dif-

ficulties in obtaining exact solutions of the complicated governing equations. Conse-

quently, successful design has been reliant upon expensive wind tunnel experiments.

With the advancement in computational fluid dynamics (CFD) and computer ar-

chitectures, numerical computations now can be used as alternatives of experiments

for much of the configuration design process. Although wind tunnel tests continue

to be important, the trend is clearly toward the computational approach using accu.

rate numerical schemes to enhance the experimental findings. The focus of present

research is to develop accurate numerical algorithms for predicting viscous super-

sonic flowfields that occur in propulsion systems. In particular, the predictions of

supersonic flows through high expansion ratio nozzles will be emphasized.

The analysis of viscous supersonic flows would require the solution of tile cofi,-

pressible Navier-Stokes equations with proper boundary conditions. It is well known

that the compressible Navier-Stokes equations are very difficult to solve because

the whole equation set is strongly coupled and highly non-linear. To avoid directly

solving this stiff non-linear system, certain degrees of approximations have to be
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made. One example for this is the classical Prandtl boundary layer approach. The

5oundary lkyer assumptions allow inviscid and viscous flows to be computed in-

dependently. For supersonic flows, the governing equations for the inviscid region

are rendered hyperbolic by neglecting viscous effects. This hyperbolic equation set

can be efficiently solved by the method of characteristics (MOC) 1I1. For the vis-

cous region, the pressure gradient normal to the wall is neglected from order of

magnitude considerations; thus, the Navier-Stokes equations reduce to boundary

layer equations. Numerous attempts have been made to solve the boundary layer

equations both analytically and numerically. The analytical technique given by von

Karman and Pohlhausen 12] requires assumptions of the velocity profile inside the

boundary layer and is only valid for very simple problems. The numerical solutions

of boundary layer equations, which can handle more complex problems, have been

extensively investigated since the early 1970's. Some representative algorithms are

summarized by Anderson et al. 131.

The classical boundary layer approach assumes the interaction between the

inviscid region and the viscous region is small; consequently, either region can be

solved independently. To take into account this interaction, some sort of inviscid-

viscous patching procedure has to be employed. One typical example of this ap-

proach is given by Ref. (4). The patching method is based on the combination

of an inviscid MOC procedure and a boundary layer algorithm. An iterative pro-

cedure between inviscid and viscous regions is accomplished by intercharnging the

wall pressure from the MOC procedure and the displacement thickness from the

boundary layer procedure until convergence is achieved. This inviscid-viscous inter-

action technique does p, -de an efficient algorithm to calculate viscous supersonic

flows. However, it is only valid for weak-interaction flows. For flows with strong

interaction, the pressure gradient normal to the wall cannot be neglected. Thus,
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the boundary layer algorithm as well as the inviscid-viscous interaction procedure

are no longer applicable. One typical example of these strong interaction flows

is the supersonic flow through a high-expansion nozzle. A recent work done by

Kushida 151 indicates that the boundary layer displacement thickness inside the

nozzle can be as large as 42% of the nozzle radius at the exit. In this regime, the

inviscid-viscous patching procedure fails to describe the pressure variation inside

the boundary layer and the realistic mass flow rate, thus numerical solutions of the

Navier-Stokes equations ate rec-uired.

For typical viscous supersonic flowfields, the governing equation set is hyper-

bolic in the supersonic region and is elliptic in the subsonic region inside the bound-

ary layer. This mixed hyperbolic/elliptic character makes the steady Navier-Stokes

equal iom, cQt.em -ty diFeult to solve because a different numerical algorithm has to

be ernpl-i-d ;4, e.ch region, as we have seen in the classical approach. However, if

we ho)i.Oer the unateady Navier-Stokes equations, the equation set becomes hyper-

bolic in time for both supersonic and subsonic regions. Therefore, given an initial

guess of the f'owfield, the solutions can be obtained by marching in time until the

steady state is reached. This procedure, general~y referred to as a time-dependent

or time-iterative scheme, enables one numericai algorithm to be used throughout

the flowfield. The time-dependent concept was first applied to inviscid calcula-

tions for flows over b!unt bodies by Mcretti and Abbett 161 in 19066. Since then,

time-dependent solutions have become an important segment of CFD. The first ap-

plication in compressible viscous flows was done by MacCormack 171 in 1969. I11

this early work, an explicit predictor-corrector scheme was proposed to solve the

Navier-Stokes equations. This method is very straightforward to program but it

suffers from a limitation on the time step size when only steady-state solutions are

of interest.
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Time-dependent schemes can also be implemented in an implicit fashion. The

implicit timne-dependent formulation imposes no stability limitation on the size of

time steps, hence, in most cases, is superior to the explicit scheme if only steady-

state solutions are concerned. One important application of implicit time-dependent

algorithms to compressible Navier-Stokes equations is the alternating direction im-

plicit (ADI) scheme suggested by Beam and Warming 18,91, which is also noted

as the linearized block implicit (LBI) scheme by Briley and McDonald 1101. The

ADI scheme has gained popularity since the mid-70's due to its capability to solve

multi-dimensional inviscid as well as viscous flows.

W'th the progress in CFD during the past decade, numerous well-developed

algorithms are now available for compressible Navier-Stokes calculations. These

algorithms :an in general be divided into two categories according to the the type

of spatial discretizations. For those of central-difference type, Steger III) formulated

the ADI scheme in the general coordinate system, Baldwin and Lomax 1121 solved

the thin-layer Navier-Stokes (TLNS) equations with an algebraic turbulence model,

and Pulliam 1131 applied the implicit ADI scheme to solve flows over airfoils. For

those of upwind-difference type, Lombard et al. 1141 proposed a conservative supra-

characteristics method (CSCM) based on non-conservative flux-difference splitting,

and MacCormack developed a line Gauss-Seidel procedure based on Steger and

Warming 1161 flux-vector splitting. Similar investigations are also noted by other

authors; these include the relaxation scheme by Chakravarthy 1171, the LU scheme

by Yoon and Jameson 1181, the single level scheme by Lombard et al. 1191, and

the diagonally dominant ADI scheme by Chang et al. 1201. Thomas and Walters

1211 used a similar relaxation procedure to solve two-dimensional viscous supers;onic

flows based on van Leer's flux-vector splitting 1221. More recently, this work has

been extended to three dimensions by Newsome et al. 1231.
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In developing an efficient numerical algorithm that is well suited to the vis-

cous supersonic calculations required for this study, four aspects of solutions of the

Navier-Stokes equations are considered:

1. The algorithm should be abl. ;o take into account the predominantly supersonic

nature of the flowfield, and consequently give rapid convergence in the high

Reynolds number, unseparated limit.

2. For lower Reynolds number flows, proper downstream boundary conditions

have to be implemented on the subsonic portion of the exit profile so that the

flow will respond to downstream environmental charges.

3. To predict thrust with accuracy, global mass conservation has to be ensured.

This feature is accomplished by using the strong conservative form of the gov-

erning equations.

4. 'rhe algorithm can be easily simplified to a certain extent such that a pure

space-marching procedure is allowed for high Reynolds number, ,nseparated

flows. For this reason, the parabolized Navier-Stokes (PNS) procedure is also

considered in this study.

To begin with, the implicit time-dependent scheme is first applied to solve

the quasi one-dimensional Euler equations for spatial discretizations based on both

central differencing and upwind differencing. This preliminary work allows the first

assessment of algorithms in terms of computational efficiency and accuracy. Some

details of the algorithms such as effects of approximate Jacobians, and comparisons

of accuracy between first order and second order upwind schemes, will be discussed.

Two-dimensional calculations start with the application of the AD! scheme

to the axisymmetric two-dimensional TLNS equations in order to justify the ap-

propriateness of this algorithm for viscous supersonic computations. To encounter

predominantly supersonic flows, a hybrid upwind/central differencing scheme is pro-

, -~ - , . I I ..
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posed along with Its Fourier stability analysis 1241. Accordingly, three approximate

factorizati6n algorithms and one direct method are formulated for the solutions of

the discretized TLNS equations based on this hybrid differencing scheme. To verify

the accuracy of the proposed hybrid scheme, the results computed by using current

algorithms will be compared to those by the MOC procedure given in Ref. 141.

For better understanding of the effects of downstream boundary conditions

on the flowfield, supersonic flows through a conical nozzle and a .irh area ratio

contoured nozzle are computed by using the proposed algorithms. _[he variation of

flow character is obtained by varying the back pressure level. In particular, back

pressure levels that are sufficiently high to produce separation i, side the nozzle are

considered in order to simulate the classical experimental charp.cteristics that are

observed when altitude nozzles are operated on sea-level thrust stands. The flowfield

demonstrations include both laminar and turbulei.t calculations. The turbulent

calculations are based on the Baldwin and Lomax model 112,251. Comparisons

of global naass conservation between strong conservative and weak conservative

formulations are made.

Parallel to the development of Navier-Stokes algorithms, the applications of the

time-dependent scheme on PNS procedures are also studied. Parabolized Navier-

Stokes algorithms 126-291 have proven to be very popular becau.4e of their accu-

racy and efficiency. For many flowfields, they give results that are almost identical

to those obtained with full Navier-Stokes equations, although the CPU .ime re-

quired is much less than that needed for the complete equations. The basic idea

of PNS schemes is to render the steady state Navier-Stokes equations parabolic in

the streamwise direction by proper approximations. Th~s parabolic set of equations

can then be solved by a space-marching procedure similar to the MOC procedure

used for inviscid supersonic flows. The PNS algorithms diffT•r from the classical
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boundary layer approach in that the normal pressure gradient inside the boundary

layer is rethined and coupled to the pressure variation of the inviscid core flow in

the parabolized equations. Consequently, PNS schemes can handle strong inviscid-

viscous interaction flows without losing accuracy. The drawaack of PNS algorithms

is that the marching procedure fails if reverse flow is present in the flowfield [31.

The major difference between PNS procedures and Navier-Stokes solvers is

that PNS schemes are normally formulated in terms of the steady state equations

(see, for example Ref. (261) while Navier-Stokes schemes are generally formulated

in terms of the time-dependent equations. Because of this, it is difficult to extend a

PNS algorithm to a Navier-Stokes algorithm. In the present study, PNS algorithms

are obtained as a simplification of the time-dependent general flux split Navier-

Stokes algorithms. One advantage of this is that a number of PNS approximations

can be defined including the traditional Vigneron approach 1261 and a new approach

based upon the physical characteristics of the equations. Furthermore, the resulting

PNS procedure still contains the temporal derivative. This requires the solutions to

be obtained by iterations in time at every streamwise station. This time-iterative

PNS procedure makes thL space-marching problem well-posed and consequently

eliminates the necessity of a safety factor that occurs in the - aditional approach.

As a further example of the application of Navier-Stokes solvers mentioned

above, axisymmetric swirling nozzle flows are studied. Swirling flows ahead of

the combustor in ramjet applications have been suggested as a means to reduce the

reattachment length of the combustor flowfield. The introduction of swirl genrratfd

by fixed vanes located in the inlet of the dump combustor can greatly increase the

efficiency of the combustion process and thus reduce the length of the combustor

1301. However, the residual swirling flow in the combustor will enter the exhaust

nozzle, resulting in losses in thrust and reducing the mass flow rate. Doth of these



decreane the nozzle performance. Therefore, it is important to nmderstand to what

degree swi'ling affects the nozzle flowfield and, subsequently, the overall nozzle

performance. Several previous investigations have considered the effects of swirl,

but have ignored the effects of viscosity. In this study, we look at the effects of swirl

as a function of nozzle Reynolds numbers.

Previous investigations of swirling nozzle flow include both quasi-one-

dimensional and axisymmetrpr, two-dimensiona! analyses. Carpenter et. al. 1311

in an early study obtained one-dimensional results by neglecting the radial veloc-

ity component. Hoffman and co-workers 132,331 studied swirling flows in annular

propulsive rozzles by means of two-dimensional inviscid numerical technivues. To

parameterize their studies, they used four different inlet swirl profiles: free vortex,

constant angle, forced vortex, and Rankine vortex. Their calculations are based

upon the explicit MacCormack scheme [7] for the transonic flowfield, while the

method of characteristics was used to comnute the supersonic flowfield after the

throat. They concluded that for values of swirl often encountered "n ramjet and

turbojet applications, the effect df swirl on the •iozzle performance is small and crn

probably be neglected.

A recent work by Dutton 1341 indicates that significaizt reductions in the nozzle

discharge coefficient and the vacuum stream thrust efficiency may occur for high val-

ues of swirl at the inlet of the nozzle. Again, Dutton uses the M \IacCormack

scheme to analyze three different nozzles, including a convergent-divergent (C-D)

nozzle, an annular nozzle, and a converging nozzle- Several inlet swirl profiles were

enforced as inlet boundary conditions, and the corresponding effects of thrn were

identifle:i. He also verified the numerical results by comparing the comnputcd wall

static pressure with experiments for a C-D nozzle with an area ratio of .25.

LMl
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The swirling flow investigations mentioned above are all confined to inviscid

calculations. As indicated before, the boundary layer displacement thickness inside

high tarea-ratio nozzles can be very large at the exit. In this regime, the inviscid

assumption is inadequate. The present study proceeds with the numerical solutions

of viscous swirling nozzle flows by using implicit time-dependent schemes. Viscous

cakculations are done for a series of Reynolds numbers to identify the effect of the

boundary layer on swirling nozzle flows. To place these viscous results in perspective

with inviscid calculations appearing in the literature, the results in the inviscid

limit are also presented a;ong with those of the viscous calculations. Additional

calculations of swirling flows in high expansion nozzles are also given. Both flowfield

details and the effect of swirl on the integral nozzle performance are shown.

Finally, numerical algorithms developed for axisymmetric two dimensional

flows are extended for three-dimensional viscous superson;c calculations. Both PNS

and global Navier-Stokes procedures are demonstrated by flowfield predictions on

a three-dimensional nozzle with a rectangular cross-section.



CHAPTER 2

THE APPLICATION OF TIME-ITERATIVE SCHEMES TO

THE ONE-DIMENSIONAL EULER EQUATIONS

This research starts with quaui one-dimensional calculations of compressible

flows for two reasons. First, the analytical solutions of these flows are easily ob-

tained, and thus provide back-to-back checks of the accuracy of the numerical algo-

rithms. Second, the simplicity in the formulation of the equations allows a series of

numerical experiments to be done in order to explore the potential difficulties asso-

ciated with multi-dimensional calculations. The central-differencing as well as the

upwind-differenced Euler implicit schemes are applied to the calculation of quasi-

one-dimensional flows through a convergent-divergent nozzle. Special emphases are

placed on stability analyses of the numerical algorithms and the distinctive charac-

teristics of supersonic flows.

2.1 Governing Equations

The unsteady quasi one-dimensional Euler equations are given by

8-(pa) + t(pua) = 0

a a 2 (2.1-(pua) + -(pu a) + - = 0 (2.1)
at4X ax
a a

where, standard fluid dynamic notations have been used. These include the density

p, velocity u, presslire p, and the cross-sectional area a. The total energy e per unit
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volume is defined by

e pC + pu 2

2

in which, c is the internal energy per unit mass. For compressible flow, the perfect

gas relation is used to close the problem.

For easier implementation of numerical procedures, Eq. (2.1) is expressed in

vector form as
IQ + aE = H (2.2)at a z

where Q, E, and H are flow variables, flux vector, and source vector, respectively.

They are defined by

Q = !pa,pua,eaJT

E = 1pta, (pu 2 + p)a, (e + p)JalT

H = 10,p T,0

10,
where the superscript T refers to the transpose of the vector. Equation (2.2) is writ-

ten in strong conservative form 1351, which is preferred for numerical computations

because it conserves mass, momentum, and energy identically in the discretized

form. For flows with discontinuities, this conservative formulation allows the exis-

tence of weak solutions, thus allowing shock-capturing.

The unsteady Euler equations are hyperbolic in time and can be converted into

uncoupled characteristic equations. If we define the Jacobian matrix A by

aQ'
and use the chain rule, Eq. (2.2) becomes

-- + A-- = H. (2.3)

For the present one-dimensional case, A is found to be

0 1 0
+ =- aZ:2u (I .- I) U , -Y

2
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The Jacobian matrix A can be transformed to a diagonal matrix via the similarity

transformation defined by

A = MAM'. (2.4)

The diagonal matrix A takes the form

A = •2 0
0 AI3

where Al,A 2,and IA3 are eigenvalues of the matrix A. Matrices M and M` are

composed of the left and right eigenvectors of the matrix A, respectively. For the

matrix A given above, three eigenvalues are

A2 = + C

A3 = - C

In which, c is the speed of sound. The left and right eigenmatrices M and M- are

given by

M=[ 0' + I) 12- C

12- ~2 + C• I ) l

and

v'2 2'v'2pc'*(i'+u I(t+(-,)M -- U7L2-, p= , Cj +V

Equation (2.3) now becomes

2 + MM-' MaQ =1H.

If we define the characteristic variable Q by

__O OQ
at at
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and multiply Eq. (2.2) by M- 1 , we have

dQ+ A =i
Ti x

where

H/- M-'H.

Equation (2.5) is equivalent to the three decoupled characteristic equations

a + A, = h, i = 1,2,3 (2.6)

in which 4, and h, are elements of Q and H, respectively.

The procedure above demonstrates that the one-dimensional Euler equations

can be transformed into three characteristic equations with each equation governing

one-dimensional wave propagation with a specific direction. These characteristic

equations can be obtained by multiplying the governing equations in vector form

by the eigenmatrix M-1. For subsonic flows, A\ and A2 are positive ,while A3 is

negative. The equation set possesses both right and left running characteristics.

For supersonic flows, all three eigenvalues are positive, thus the waves can only

travel from upstream to downstream. As will be discussed later in this chapter, this

allows a marching procedure to be used for supersonic flow calculations.

2.2 The Central-Dlfferencint Alforithm

To solve Eq. (2.2) numerically, the central-differencing Euler implicit scheme

is considered. Symbolically, the Euler implicit scheme can be expressed as

-- + ( a - H) = 0 (2.7)

where superscripts n + 1 imply these quantities are to be evaluated at tile new time

level. If we define IQ = Q -+1 - Qn, the flux vector E and the source vector I/

can be linearized according to the following local Taylor series expansion,;

En+l = E" + AAQ (2.-)
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H -+' = H" + DAQ (2.9)

in which D is the Jacobian matrix defined by D = aH/aQ. For the present quasi

one-dimensional cue, the matrix D is given by

0 0 0

[ 2 2 -2 d2-t- .

00 0

Upon substitution of Eq. (2.8)and Eq. (2.9) into Eq. (2.7), we have

(I - AtD + 4t 2-A),Q = -AtR (2.10)

where R is the residual vector evaluated at time level n,

8E
R =(-- H) (2.11)

Note that all the derivatives a/!z in Eq. (2.10) and Eq. (2.11) imply discretizations

by central differencing. The left-hand side operator of Eq. (2.10) results in a block

tri-diagonal matrix. Each block is a 3 x 3 matrix.

2.2.1 Boundary . dnitiols

For hyperbolic equations, the boundary conditions can be easily enforced by

using the MOC boundary procedure suggested by Rai and Chaussee 136: and

Chakravarthy 1371. As indicated earlier, the governing equations imply three waves

travel with specific directions. Boundary conditions are imposed for those waves

running into the computational domain, while for waves moving frorn ihiid, tIe

domain toward the boundary, the decoupled characteristic equations .-urih R.- I hioqe

given in Eq. (2.6) are used to allow the information to propagate from inside the

domain.

For subsonic inflows, A, and 1\2 are positive, which implies two conditions IIIusL

be specified at the upstream end. A reasonable choice is to specify the stagnation
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pressure P0 and the stagnation temperature T'. Let these specified values of p'

and T7 be kiven as

Po = K,

To = K 2.

If we define a vector 01 by

0j = (PO,T°,O) T

then, from Taylor series expansion of 0, we ha',e

c9Q

where cfI/lQ is the Jacobian matrix of fl. To force fnn+l to be fixed at the value

of n,, where 11, = (KI, K 2,O)T, the following equation can be employed

an
AQ = fl, - In. (2.12)

Since the third eigenvalue ,a is negative, we must select the decoupled char-

acteristic equation corresponding to A3 from Eq. (2.6) to complete the upstream

boundary conditions. If we define the selection matrix L- by

0 0 01

L-= 0 0 0
0 0 1

and multiply L-M- 1 on both sides of Eq. (2.10), we obtain the characteristic

equation corresponding to A3 as

L-A "(I - AtD + At (-3A)AQ = -AtL-M-' R. (2.13)c)zX

Combining Eq. (2.12) and Eq. (2.13), the discretized equation at the inlet boundary

can be written as

--. + L-M-'(I - AtD + At-D-A)]AQ = fl, - n" - AiLM 'I. (21.o1)aQ ax



16

For supersonic flows at the inlet, all three characteristics come from outside

the domain; therefore all entries of the dependent variable Q have to be specified.

For supersonic flows at the exit, all three characteristics are outgoing; therefore, the

discretized equation itself, Eq. (2.10), can be applied directly without any special

treatment. For subsonic flows at the exit, A3 is negative, hence one boundary

condition has to be specified. Let the specified quantity be the back pressure Pb =

K3 . The vector fl now takes the form

0= (0,O, Pb).

To select the characteristic equations corresponding to A, and A2 , one can

choose the selection matrix L+ a [ °].
L+ 0 1 0

000

Similarly, the discretized equation for this case is

an + L+MI(I - AtD+ At L)JAQ = 0,- nn' - AtL+AP-"R (2.15)

where the constant vector fl, = (0,0, K3 )

In the discretized equations at the boundaries, Eq. (2.14) and Eq. (2 .l), the

centrally differenced spatial derivatives a/ax are not applicable. To remedy this,

we use two-point one-sided differences instead of central-differences. This approach

retains the block tri-diagonal structure of the left hand side matrix but is only first

order accurate.

In order to have better solution accuracy, three-point one-sided differeciics canl

be used. This results in extra elements at the first and tie last row of the hfl.

hand side matrix, which can be eliminated easily by elementary matrix operations

1381. This approach retains second order spatial accuracy throughout the whole

computational domain, and will be generally used for the discretized equations at

the boundaries.
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2.2.2 Stability Analysis

The application of Fourier or von Neumann stability analysis 1241 has become a

powerful tool for today's CFD. In developing a new numerical algorithm, the stabil-

ity analysis provides abundant information about the convergence requirements of

various parameters involved in the algorithm. Before attempting to solve Eq. (2.2)

numerically, we consider the Fourier analysis of its discretized form, Eq. (2.10).

For any given function f(x, t), the Fourier transform is defined by

(00

where 1 is the square root of -- 1. This transform exists only if f(x,t) is square

summable, that is,

00 f2(x,t)dx < oo.

The inverse transfcrmation which transforms f from the frequency domain to the

spatial main is defined by

f(x,t) = /[N J(w't)e' 'Z dw
2n

The analogous transform for a function q(x, t) defined only at discretized points can

be written as
CO

IS= -00

or
00

where the superscripts n denote the time step (t = nrt) and the subscripts t

represent the spatial step (-, = 1Az). The inverse transformation for the discretized

function q is given by J/Az ,()en wz=' (2.13)2 i 
6
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Upon substitution of a specific Fourier mode with frequency w into the dis-

cretized equation, we obtain the functional relationship of the amplification factor

defined by

= ((2.17)

The stability criteria for any specific algorithm are then determined by the magni-

tude of g. If 191 is greater than unity, the amplitude corresponding to the wave mode

w is growing, and hence is unstable. If [g[ is less than unity for all wave modes, the

algorithm is stable.

In solving the central-difference discretized equation numerically, second order

as well as fourth order artificial dissipation terms are added to Eq. (2.2) to avoid

odd-even decoupling and to damp out high frequency oscillations. This results in

LE a 3 Q C.AX 4 OQ
aT + ax 4 A 2T-" Zt 8At aX4

where t, and t are positive constants. The discretized equation, Eq. (2.10), now

becomes

(I - AtD + At aA - A2 I)AQ = -AtR - (C AX4(ýS) (2.18)

FX _4 C1X 8 C

For linear stability analysis A can be treated as a constant matrix. In the

frequency domain Eq. (2.18) becomes

LQn÷i = L 2Qn (2.10)

where L I and L2 are given by

•, At

II14- ( -(1 - cos W)I + ItAsinw.. - A(D
2 AX

and
L III + - cos)-. - (Cos W )

2' 2
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with w, representing the wave number defined by w, = wAx.

Analogous to the delinition of the amplilication factor for the mwtalar syst,,it.

we can define the amplification matrix C by

Qn+l = GQn.

The convergence criteria are then determined by the eigenvalues of the matrix G.

A stable algorithm is ensured when the magnitudes of eigenvalues of C are all less

than unity. From Eq. (2.19), G can be easily evaluated by C = Lj 'L 2 . At the high

wave number limit (w, =, Lhe eigenvalues of C are found to be

1 + e, - 2c

1 + (, - 2t
92=

1 + C, + (-Y- )-'a-•
I + ,- 2ce

g3 
+

where a is defined by

uAt

Ax

which is referred to as the Courant-Friedriches-Lewy (CFL) number. According to

the absolute values of g, and 93, it is required that

0 < (e < 1 + C, (2.20)

to maintain numerical stability. The value of 92 depends on the CFL number, ,,

t., and the geometry. The stability criteria associated with it are rather involved.

However, several conclusions still can be drawn. First, in a divergent portion of the

geometry (L* > 0), 1I21 is always less than unity, thus the Euler implicit scheme

is stable. Second, in a convergent section (L, < 0), there exists a certain range

of CFL such that jg2l > 1 for fixed c, and Ce. Third, if no fourth order artificial

dissipation is included (c, = 0), Ig2I is alwa,: greater than unity in the divergent
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section, hence the algorithm is unstable. In practical situations, the geometry

contains 'oth convergent and divergent sections; therefore, the central-difference

Euler implicit scheme for quasi one-dimensional flows is only conditionally stable.

The eigenvalues of G can be calculated numerically for various wave numbers.

Figure I shows the plot of the magnitude of the maximum eigenvalue versus W,

for CFL = 1, 10, 100 at a flow Mach number of 0.5. This figure clearly illustrates

that incresing the CFL number tends to decrease the magnitude of the maximum

eigenvalue. which its bcneficial for the speed of convergence. Effects of the artificial

dissipation are demonstrated in Fig. 2, where the maximum eigenvalue of C is

plotted for c, = 0,0.25,0.5, 1.0 for a ficed CFL of 10. It shows that the addition of

fourth o-'der dissipation damps out high frequency components of the wave. It is

also observed that fe = 0.5 is optimal as far as convergence is concerned.

The Fourier analysis discussed above is based on two major assumptions. First,

the analysis is only valid for linear cases, in other words, the nonlinear effect, of the

Jacobian matrix A has been neglected. Second, the analysis assumes an inflnite

domain and excludes the effect of boundary conditions. Therefore, the results are

qualitatively rather than quantitatively accurate.

From the results of Fourier stability analysis, it is apparent that the CFL

number plays an important role on the speed of convergence. To obtain optimum

convergence, the CFL number should be as large as possible provided that numerical

stability is retained. Since the CFL number is directly related to the time step size,

we can calculate At according to the desired CFL number. If one is interested in

accurate solutions during a transient, At must be uniform throughout the flowfield.

In this case, At is better determined according to the maximum value of u, that is.

aAX

Umaxz

In general, the %ilocity u varies from point to point, the using of a uniform time step
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Figure 1. Stability results of 1-D implicit central-difference scheme
without artificial viscosity
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Figure 2. Stability results of I-D implicit central-difference scheme
with artificial viscosity
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will result in non-tniform CFL numbers throughout. the flowfield. Consequently,

the overall ionvergence is deteriorated, especially when only steady state solutions

are of interest. In order to have optimum convergence, At can be locally determined

by the given CFL number, in other words, the time step size at each grid point is

calkulated according to

OAxAt =- .
U

This implies a constant CFL number has been enforced over the whole flowfie'.. The

introduction of this spatially varying time step (or so-called constant CFL) greatly

enhances the speed of convergence [391. ij, this study, the constant CFL approach

will in general be used for all calculations since only steady state solutions are

concerned.

2.2.3 Comput tional Fesults

The one-dimensionai flow through a convergent-divergent nezzle with the area

variation giv,.n by

A,,, - Ath cos.27rz.+ Ain + At,
a~xco=s(- )

2 L 2

is chosen as a test problem The geometry associated with definitions of x, A,,,

Ath, and L are shown in Fig. 3. A uniform grid with total of 40 points and an area

ratio (AihIA,,,) of 0.8 are used for all calculations that follow.

Three typical cases are investigated, including pure subsonic, transonic, and

pure supersonic flows. Figure 4 shows the convergence rates of these cinses by

plotting the L-2 norm of the non-dimensional change ;n Q (AQ/Q) against tie

number of iterations. Each curve is obtained by using the optimum CrL rumnber

(the CFL number that gives the fastest convergence). The supersonic case converges

the fastest among the three cases because of the predominantly hyperbolic nature

of the flowfield. For pure subsonic flows, the system of equations is elliptic in
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L

A,,
Ath

Figure 3. Nozzle geometry for 1-D calculations



25

CFL.,,

SubAonic 1000

10- 4 Transonic S000

Supersonic 5000

1-81 Subsonic

120 Transonic

10- 20 I I

0 5 10 15 20 25 30

Number of iterations

Figure 4. Convergence for 1-D implicit central-differenc e scheme
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the spatial direction since both left-running and right-running characteristics are

present in the flowfleld. The subsonic cue shows the slowest convergence dtic to titi

elliptic behavior. The accuracy of the central-difference formulation is demonstrated

in Fig. 5 and Fig. 6, where the computed Mach number and pressure distributions

along the streanwise direction for the transonic calculation are compared to those

from exact solutions for the same nozzle. The comparison shows that computational

results agree very well with exact solutions.

2.3 The UvwInd-Dlfferencing Alforlthm

The main purpose of this study is to develop efficient numerical algorithms for

supersonic calculations. As indicated earlier, the predominantly hyperbolic nature

of supersonic flows distinguishes themselves from transonic and subsonic flows. To

take advantage of this character, upwind schemes appear to be attractive. As we

have seen in Section 2.1, the Jacoblans of the governing equations generally contain

both positive and negative eigenvalues. The sign of each eigenvalue implies the

direction of wave propagation on the z - t plane. The crux of flux-vector splitting

upwind algorithms 116,221 is to separate the flux vector E into parts with definite

(positive and negative) eigenvalues. The splitting can be formally indicated as

E = E+ + E- (-1

where the eigenvalues of the Jacobian of E+ are positive and those of E- are

negative. There are an infinite number of ways to accomplish this splitting. As

an example, we have considered the Steger and Warming [161 splitting. From the

similarity transformation of A defined by Eq. (2.4), we readily have

A = M-AM.

The Steger and Warming splitting takes the form

A+ = (A + IA^)/2
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Figure 5. Mach number distribution of transonic 1-D calculation,
central-difference solutions
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Figure 6. Pressure distribution of transonic 1-D calculation,
central-difference solutions
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A- = (A - IAt)/2

where IA! refers to the matrix composed of the absolute values of the elements of

A. The matrix A can then be decomposed into

A+ = MA+M-4

A- = MA-M-'

with A -- A+ + A-. By using the homogeneous property of the matrix A, we have

E = (A+ + A-)Q = E+ +E-

in which, E+ = A+Q and E- = A-Q.

Again, using Euler implicit differencing in time, the flux split system can be

described by

A-tQ .3E÷ aE-

A linearization similar to Eq. (2.8) can be applied to E+ and E-. The result.ing

delta form is
a + aA

1I - A4D + At(-a A+ + a A)I"Q -AtR' (2.23)
ax ax

where the residual vector R' is

R± E+ aF- -H) n (2,24)

The Jacobian matrices A+ and AT are defined by A+ = aE+I/Q and A[

aE-/dQ. Note that A+ t- A+ and A7- $ A- when the eigenvalues of A are of

mixed sign. For the one-dimensional case, if the flow is supersonic (,i > C), -AI' iq

exactly the same as A given in Section 2.1 and At is zero. As an approximation.

A+ and A- can be used instead of A' and A- in Eq. (2.23). The effect of using

true ot approximate Jacobian matrices is detrimental as will be discussed ill the

next section.
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All spatial derivatives in Eq. (2.23) and Eq. (2.24) imply that they will be

differentlat~d according to the signs of their eigenvalues. For example, 8E+1/8:

and ME-/lz are differentiated according to

BE+ E,+ - E,+_1  E,+ - 2E+ 1 + E+ 2

B: Az 2Ax

and
BE-- - E,-E. E- - 2E,+E-

49Z 46 24z

where s = 0 for the first-order scheme and i = 1 for the second-order scheme.

The left-hand side matrix in Eq. (2.23) is block tri-diagonal if all spatial deriv.-

tives are discretized by first-order upwind differences. It is well known that first-

order upwind differencing adds a large amount of artificial dissipation to the nu-

merical algorithm, and is highly inaccurate. If second-order accurate differencing is

employed, the left-hand side matrix becomes block penta-diagonal, which is more

time-consuming to solve than the block tridiagonal matrix; however, if only steady-

state solutions are of interest, one can use first order differencing on the left-hand

side and second-order differencing on the right-hand side. This will retain the block

tri-diagonal structure of the left-hand side matrix while maintaining the second-

order accuracy of the steady state solution. Jespersen and Pulliam 1401 have shown

that this non-consistent first and second order differencing will reduce the stability

bound of the CFL number and slow down the convergence. To make consistent

second-order differencing possible, one can approximately factorize the lert-hand

side of Eq. (2.23) as,

a a(I - AD + At t)(A - AiD)'(1 - AtD + At-±A7)AQ = -AIR' (2.25,

Equation (2.25) is equivalent to

0 .
(I - atD + At-a A4 )AQ" = -At]?' (2.26)
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and
a _

(1 - AtD + A•1-A,)Q = (I -5D)7Q. (2.27)

Equation (2.26) can now be solved by space-marching from upstream to downstream

since the left hand side matrix is lower bi-diagonal for first-order spatial differenc-

ing and is lower tri-diagonal for second-order spatial differencing . This forward

marching together with the backward marching given in Eq. (2.27) will complete

one iteration.

Two comments can be made at this point. First, as indicated by Steger and

Warming 1161, small oscillations occur by using this splitting when a sonic line is

crossed because of the discontinuity in the first derivative of the split flux when the

eigenvalues change sign. This oscillation can be partly removed by the introduction

of a blending coefficient in the calculation of eigenvalues 1411. Second, if the flow

is supersonic, E- and A- are identically zero. Equation (2.23) reduces to a form

analogous to the forward-sweep step given in Eq. (2.26), namely

(I - AiD + At A+)AQ = -- t( - H) . (2.28)

As in Eq. (2.26), the left hand side matrix of Eq. (2.28) is lower triangular and only

the forward marching step of Eq. (2.26) is necessary to complete one iteration. This

allows a pure marching solution to be obtained.- In fact, we can rearrange Eq. (2.28)

to

2 E,+ - E+ E+ - 2E,+- + E,- nAI •tD +(I +- -A +t IAQ, - At (.' + PCI!

2+AA AX 2Ax
(2.29)

where r = 0 for Frst-order scheme and P = I for second-order scheme. This

equation is a marching equation, which can be solved by iterating in time at each

grid point before advancing to the next streamwise location. Thus, the vector AQ,

on the left hand side of Eq. (2.29) can be driven to the desired tolerance by time-

marching at the i-th grid point before the procedure marches to the i+1-th point.
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This marching procedure will be extended for two-dimensional calculations in the

following chapters and will not be discussed in detail here.

2.3.1 Boundary Conditions

The boundary procedures for upwind schemes are similar to those for central-

difference schemes. At boundaries, the characteristics coming from outside the

domain are not defined and are replaced by specified boundary conditions. By

neglecting these incoming characteristics, the discretized equations reduce to

aa(I - AtD + At A-)A Q = -At( - H) (2.30)

at the upstream inlet, and

(I - AWD + At-A+)AQ= -at( E+ H) (2.31)axz

at the downstream end. In these two equations, A+ and A- have been chosen

instead of At and A- to enable the application of the MOC procedure. By us-

ing the identity matrix I = MM-I and the definition of A+, Eq. (2.30) can be

approximated by

az aE-
M(J - AtD + at x-)m -H')

Multiplying both sides by M- 1 , we have

-a _ tM " E-
(1 - AtD + At A-)A(Q = - - H)

which is equivalent to the previously defined decoupled characteristic cqtiat.ion.

Again, multiplying this characteristic equation by a selection matrix L+ and coin-

bining it with the specified boundary conditions discussed in Section 2.2.1 gives

n+L+ -1 (- atD +At'rA-)-AQ = 0, - nn- t ( - H)

Q a.3- )
(2.32)
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where the vectors f) and fli follow the same definitions given in Section 2.2.1. This

boundary procedure is similar to Eq. (2.15) except different decoupled discretized

equations have been used in Eq. (2.32). The discussion above illustrates that the

boundary procedures formulated for the central-differencing algorithm given in Sec-

tion 2.2.1 are also applicable to the upwind-differencing scheme.

2.3.2 StabIlItY Analysis

The stability analysis is now studied for the upwind algorithm. For demonstra-

tion, only first-order differencing on both sides of Eq. (2.23) is considered. Following

the definitions given in Section 2.2.2, the amplification matrix G can be expressed

by G = L-'L2 with

L, I - AtD + -(1 - cosuw + isinwz)A+ + -(cosw= + isinw, - I)A"

L2=

where true Jacobian matrices At and AT have been used. Alternatively, if the ap-

proximate Jacobian matrices A+ and A- are used on the left hand side of Eq. (2.23),

LI and L 2 become

At
L, = I - ALD + -t(1 - cosw, + isinw1 )A+

AX
At

+ y-(cosw, + isinw, - 1)A-

AtI2= + -(1 - cosw• + ssinw.)(A÷ - At)

As noted earlier, A+ and A- differ from A+ and A- when the flow is subsonic.

Typical stability results for the approximate Jacobian case are shown in Fig. 7 for

a flow Mach number of 0.5. An explicit-like CFL restriction (a < 1) is observed.

On the other hand, if true Jacobians are used on the left hand side of Eq. (2.23),

the upwind algorithm is unconditionally stable, as shown in Fig. 8. For supersonic
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Figure 7. Stability results of 1-D implicit first-order upwind scheme,
approximate Jacobian, M = 0.5
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Figure 8. Stability results of 1-D implicit first-order upwind scheme,
true Jacobian, M = 0.5
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Figure 9. Stability results of I-D implicit first-order upwind scheme,
supersonic flow, M = 2.0
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flows, At = A and A- is identically zero. Corresponding stability resulto are shown

in Fig. 9 for a flow Mach number of 2.0. The upwind scheme is again stable for

all CF7L numbers. As can be seen in Fig. 8 and Fig. 9, for a given CFL number,

the matxmum eigenvalue of G reaches its minimum value at the high wave number

limit (w. = ir). This characteristic implies that the upwind scheme is naturally

dissipative and no artificial viscosity is necessary to maintain numerical stability.

2.-3.3 Computational Results

The same test problem given in Sectioi, 2.2.3 is calculated by using Eq. (2.23).

Again, three typical cases are studied, they are pure subsonic, transonic, and pue

supersonic flows. Figure 10 compares convergence rates obtained by using first-

order differencing on both sides of Eq. (2.23) for all cases. It shows that the upwind

algorithm is equally efficient as the central-difference algorithm (compare Fig. 4),

exce',t for the transonic case, for which the discontinuity across the sonic point

substantially slows down the conveigence. The very slow convergence of the sub-

soni: case based on the approximate Jacobians where the optimu.n CFL number is

found to be 0.9 is also shown on Fig. 10. Tn fact, with the use of the approximate

Jacobian, the computer code diverges for both transonic arid subsonic calculat',ons

if a > 1, thus confirming the stability predictions given in the last section.

Computational results for the supe;sonic calculation are compared to exact

solutions in Fig. 11 and Fig. 12 for both first order and second order accurate coin-

putations. The second-ordL-r scheme gives solutions that are mucrl more arctirate

than the first-order scheme doe-. Therefore, second-order differencing should always

be used to ensure accurate solutions.
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Figure 10. Convergence for 1-D implicit first-order upwind scheme
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Figure 11. Mach number distribution of supersonic 1-D calculation,
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CHAPTER 3

THE APPLICATION OF TIME-ITERATIVE SCHEMES TO

THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS

Based on the information gained from the application of time-marching schemes

to the one-dimensional Euler equations, this chapter proceeds with numerical so-

lutions of the axisymmetric two-dimensional Navier-Stokes (N-S) equations. The

conventional implicit ADI procedure is first applied to transonic and supersonic

viscous calculations. The appropriateness of this procedure when applied to pre-

dominantly supersonic flows will be identified. According to the physics of viscous

supersonic flows, a discretized scheme using upwind flux-vector splitting in the

streamwise direction and central-differencing in the cross-stream direction together

with solution procedures are proposed. The Fourier stability analysis will be used

to analyze the stability criteria of this new discretized scheme. Of the solution

procedures, approximate algorithms as well as a direct solver are considered. These

procedures will be used to calculate viscous supersonic flows through nozzles. In

particular, attention will be paid to proper downstream boundary conditions for

the subsonic portion of the outflow and global mass conservation.

3.1 Governing Equations

For practical applications, the two-dimensional Navier-Stokes equations are

formulated in a cylindrical coordinate system. The equations for planar two-

dimensional flows can be easily obtained by simplifying the cylindrical version.
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Let z and y denote the axial and radial coc :he unsteady axisymmet-

ric Navier-Stokes equations for laminar co, ,re given as

Y (pu, + + =

a 2 a a , a a, au
(Py)+ 1-j(PU +p)v+ w(puvy) = 2I(2Mu- 1V -17.))y!. + + )

aax ay 81(8 8u YY
a + ±(pUuy) + 49J(pV2 + p)YJ = p + -2,,v +a ( + 1 a)Y

_ _a- av 2 -- )i
+ .. ,,(2L.. - .V)yj

(3.1)
aI a u a 2 +,u(L

t(y+ I(e+ p) uyJ + ± e+ p) vjy = a .u (2 +Lsv
T zC, Y_ a 3 ax

a,.U aTr a 9,, au ),v 2 - V T

Again, standard fluid dynamic notations are used, including the axial velocity u,

the radial velocity v, the temperature T, the pressure p, the thermal conductivity

k, the molecular viscosity M•, and the total velocity vector V. The divergence il

cylindrical coordinate is defined by

The total energy e in two dimensions is

e=pC+ 1p(u+2 +V 2).

2

To close the problem, the perfect gas relation p = pR'T is also required.

When written in vector notation, Eq. (3.1) becomes

OQtE dF c9E• OF1
aQ + M+ a F- + M,+ aF, (3.2)
aT ax aI ) at,

in which dependent variables are included in the vector Q defined by

Q = y(p,put,pu,e)T, (3.3)
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convection terms are expressed by the inviscid flux vectors E and F defined by,

E 1 ,u +P F =y puv (3.4)puv 'V 3 v + p

(e + p)uJ (e + p)v.

and the vectors E. and F. contain the second order viscous diffusion terms,So *1
E- = Y ;(P. + P,) (3.5)

E1= [V + P,)+ Mu iP-I +k

0

r, = y(± _L) (3.6)
""A(pz + Pv) + j""" AR, I3 o,- x) + kir

The source vector H includes all source terms associated with axisymmetric geom-

etry and all remaining viscous terms,

0
H -- •V3e'z- p+2,t•a (3.7)

P.IJ - I4(V2

In this form, the corresponding equations in planar two dimensions can be easily

obtained by dropping H and setting the y's in Eq. (3.3) through Eq. (3.6) to unity.

To facilitate numerical computation over arbitrary geometries, Eq. (3.2) is

transformed to a general coordinate system by a transformation defined by

f = ý(X,•)

Y7 = 17(z,Y)

where, t and t7 are usually aligned with the streamwise and the cross-stream direc-

tion, respectively.
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The transformed equation takes the form,

at + + H + '+ - (3.8)

in which the strong conservative form is achieved by placing all the metric terms

(CS,4(,etc.) inside the derivatives and cancelling the arising terms by the metric

identity. The new dependent variable ý is

Q (p,pu,pv, e)T

where, J is the Jacobian of the coordinate transformation, which is defined by,

J : COY - tvrl,.

Inviscid flux vectors in the general coordinate system become

[ pU 1 pV
PUU + t'p 'UV + rlp

(e + p)U J (e + p)V

in which, U and V represent contravariant velocities in the general coordinate Sys-

tern,

U = ,u + fvv

V = zu + 1V7,v.

Viscous flux vectors can be expressed as

-t = 1,E• + ývFv

-v = 7 ,E,, + ?711 , r

while the source vector is simply if = H/J.

For typical high Reynolds number flows, a highly stretched grid is required in

the normal direction near the wall in order to resok'e the large normal gradient inside
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the boundary layer. As a consequence, the grid size in the streamwise direction

generally cknnot be refined enough to resolve corresponding streamwise gradients

due to the limitation on computer storage even if strearnwise diffusion terms are

retained in the complete Navier-Stokes equations. Therefore, for high and even

fairly low Reynolds number flows, streamwise diffusion terms can manytimes be

neglected without losing accuracy. The resulting equation set is referred to as the

thin-layer Navier-Stokes (TLNS) equations 1111,

aý ai af F_ - clFf,Tý +• H•= + (3.9)

The TLNS equations will be used a the governing equations for viscous calculations

in this study.

After the thin-layer approximation, the viscous flux vector Fv and the source

vector H become
0

(•4k IF~ OU + a 2
Y Yn_ 311a2

fi an~

and

- (2 u - 2_'1 -(AV2

where,

-, 1- 3 A(1,--2 + - , ) 17o

3

^k2 2 2

and C,, is the constant pressure specific heat. '-he viscous term aPF/In, can be

further rear r~iaic%-' Zq

(3, (RI 9Q + R 2 )ý_ (3.10)
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in which, R, and R2 are 4 x 4 matrices defined by

0 000 0 0 0 0
0I 01 0 2 0

= 002 a. 2,0 0 0 0

0 0 04 2 2

The vectors Qi and Q2 are defined by,

ý1 = (p,, uv,e) T, 2 = (e/p, u2 ,V 2,uv)T

In this form, the viscous dissipation in the energy equation is separated from the

remaining viscous terms so that formulations for which viscous dissipation can be

neglected are easily obtained by setting R2 to zero. A further advantage of this

splitting is that matrices R, and R2 coi.(ain only metric terms and properties of

the gas (viscosity, thermal conductivity and specific heats). For cases where, , k

and Cp are constants or nearly so, this division makes the linearization of the viscous

terms particularly easy. For turbulent flows when these quantities vary rapidly, this

form separates them from the dependent variables, making it possible to identify

their effects on convergence more clearly.

With the substitution of Eq. (3.10) into Eq. (3.9), we readily have

aQ aE dF - a CQ4Q-=,+ (R,8Q-I ,• ,t- T+ '7 +- R I W ---- R 2-a,

This form will be used for discussion in the remaining part of this chapter. Note

that the Euler equations for axisymmetric. two-dimensional inviscid flows can be

obtained by dropping all the viscous diffusion terms in Eq. (3.1 1), thik re.•sti.. il

8Q ak 8Fr
+ HI o(3.12)

where, the vector H1 represents the inviscid source vector,[0]
j• = P
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The TLNS approach described above differs from the classical boundary layer

theory, in wvhich both streamwise diffusion and normal pressure gradient are ne-

glected as a result of the order of magnitude analysis. Three major advantages of

the TLNS approach over the classical boundary layer theory are:

1. Flows containing large normal gradients, such as thick boundary layer or small

reverse flow regions can be readily computed by using the TLNS equations,

since the pressure gradient is retained inside the boundary layer.

2. The pressure inside tite boundary layer couples with the pressure variation in

the inviscid core region in the TLNS approach, hence the pressure distribution

along the cross-stream direction can be soi ed in a coupled fashion without

need for the inviscid-viscous patching, which is traditionally used in the classical

approach for the numerical solution of high Reynolds number nozzle flows 14,51.

3. For internal flows, the TLNS equations automatically conserve mass, while the

invlscid-viscous calculation based on the boundary-layer approach generally ig-

nores the mass inside the boundary layer. Although, the effect of this mass

deficit on the inviscid flow is compensated by offsetting the wall contour ac-

cording to the displacement thickness, the patching procedure does not contain

proper mass flow rate. This is especially critical for flows with thick boundary

layers.

3.2 The ImDllcit ADI Scheme

As indicated in Chapter 1, the well-developed alternating direction implicit

(ADI) scheme has been extensively used to solve compressible gas dynamics prob-

lems. In this section, this technique is formulated for the axisymmetric two-

dimensional TLNS equations.
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The Euler implicit algorithm for Eq. (3.11) can be formally expressed as

Qn+t ~Q1 t Q2E 0F (3.13)Q2
+ I E- + -- fi - (R1  +R)1 =0. (3.13)

A local truncated Taylor series expansion can be used to linearize all the flux vectors

and the source term. For example, E is linearized by using

in+I = in + AAQ (3.14)

where A- + - Q and A is the Jacobian matrix 8E/lQ given by

0 G ýy 0
A &t - UU U - (-y - 2)C&u ýVu - (h - l)tv (-Y - I)•
A= v* - VU GV - (-Y - O)fyu U - (-y - 2)tv ( - 1)•

U (2* --1) ýz(•-I (-y-1) uU C.(•-y f)-y- 1)u W Yu

in "vhich, 4 is defined by f = -- (u2 + v2 ).2

Similarly, vectors F and Hý can be linearized as

A +' BAQ 3.5

ffI+1 = H" + DAQ (3.16)

where B and D are Jacobian matrices 01&/10 and ZIl/c3Q. The matrix B can be

obtained by replacing U with V and ý with n7 in tht A matrix given above. The

Jacobian matrix D is

0 0 0 0

D d 2 l 0 d 2 3  0
d31 d32 d33  d34
d 41 d 4 2 d 4 3 0
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where, 2r , a uv J
d 2,=~ i__)

3 J an p y

d2 2 jt 2 J 0 J= r3t7 3 J8 )

d3- 3-up Y

U 2 7, ar' I J

d3 2 = + -,U

y- 3 7( " )

d33 A- ' 2)
y 3 py 2

d 3 4 - y

4d4I 7- ( =) +=d 3 J an (p' Y 3 J ant p y

d4 2  - - a 14v J37T= ,-y 0( p Y

d4 3  2rt. a .su J 4 tv a p J
d 37-Jair7 (-7p y) -3 7 5/, (p "Y

The viscous terms can be linearized according to

(R, Q + R 2 3) = (RI --a± + R2  ) + (R, B,,, + R 2 - B 2 ),(.

(3.17)

where, only Qj and Q2 are linearized. The viscous Jacobian matrices are defined

by B,1 = 0QI/0Q and B, 2 = 092/4Q, they are found to be

1 0 0 0

and
-7r 0 0 p

. 2 R-2 2s 0 0
, 2 -- p "

Y -2"• 0 2-Y 0

L p p p

Substituting Eq. (3.14) through Eq. (3.17) into Eq. (3.13), we Lave

+ a a a -{I - AtD + At[- A-, -"TB- .- • (R,. B,j + R2.• B,,)!)A(-- -,ItR (3.18)
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where, the residual vector R is,

' ~ aE aF_._# a -aa' a•
-•+7 -(RI + R2-) (3.19)

All spatial derivatives in Eq. (3.18) imply that central-differencing will be used for

the discretization.

The solution of the Euler implicit scheme, Eq. (3.18), requires the solution of

a high band-width block matrix for each iteration, unlike the one-dimensional case,

where the matrix is only block tri-diagonal. The computer storage and the CPU

time required in solving this high band-width matrix are very large for typical two-

dimensional problems. Hence, a procedure like Eq. (3.18) is impractical. The ADI

or Approximate Factorization (AF) algorithm arises under this situation. The basic

idea of a ADI scheme is to split the left hand side operator of Eq. (3.18) into two

parts as,

a
(I- ALD + At-ýA)(I - 4'tDy1  

3-0

(I-ALD + At-aB - At1- AR1 -B~,j+R2--B~,2 ))AQ = -AtR

The first operator on the left hand side of Eq. (3.20) contains only ý derivatives, and

the last one contains only ,7 derivatives. The solution of Eq. (3.20) can be broken

into two steps. For the ý direction sweep, the equation

(I - AtD + At-A)AQ" = -AtR

is solved. After obtaining AQ* at each grid point, the 97 direction sweep equation,

S --AiD+ (A) B,, + R2 B,2)JAý = (I- AtD)A(I"
a a?? 07 817

is solved for AQ over the entire domain. The dependent variable is then updated

according to

nn AQ1
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Each sweep now requires only the solution of a block tri-diagonal matriv. This

approach sAves CPU time and comnputer storage.

3.2.1 Boundary Qondltlonp for the ADI Scheme

The boundary procedured discussed in Section 2.2.1 can be easily extended

to the present two dimensional cp.Iculation. First we notice that the similarity

transformations

A = M(A(M• , B = M,7AM t

which convert Jacobian matrices into diagonal matrices A( and A. exist for both

Jacobian matrices A and B. The left and right eigenmatrices for the Jacobian

matrix A are 1 0

and U pk 2  k + 1

p 1
-p;+ - + - +

wher, kt= • and k2 - . h quantities 'P and 0 are,
p T+ PC 0

= V•y-i1)c 2 V y- i)

and

9 = kvu + k2 v.

The eagenmatrices M,, and Af,-' can be obtained by the substitution of • with t;

in Mc and .vJ•-'. respectively. The transformed rri.trices ,•c and A,, are diagoi~a

matrices givers by

S22 - ----.k-.0

A¢ di 72UU, + C7 U-2. C•), V2P %/ia(Vp V + C , ýý" -1

+ PC
• ' ! I I I I I I I I I I I I- I c -I /- - -I I)
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in which., CC = i- + T and C., = iV/f1 +17V2c. The non-vanishing elements of

Ag and A. are the eigenvalues of A and B, respectively.

For demonstration purposes, the boundary procedures for the flow through a

nozzle are discussed. Extension to other types of flows is straightforward.

As indicated earlier, streamwise diffusion is negligible for a high Reynolds num-

ber flow. Hence, inviscid MOC boundary conditions are applicable at the inlet and

the exit plane. If the inflow is supersonic, all eigenvalues are positive, thus four

boundary conditions have to be specified in order to determine four unknowns at

the inlet. In other words, the dependent variables must be completely specified. If

the inflow is subsonic, only the fourth eigenvalue is negative since U < C1. This

implies three specified boundary conditions together with one decoupled character-

istic equation must be imposed at the inlet. One reasonable choice is to the specify

stagnation pressure PO, the stagnation temperature TO, and the flow angle v/u.

If the selection matrix L- is chosen as L- = diag(O, O, 0, 1) and the vector fl is

defined as fl = (P', To, v/u,O), a boundary procedure similar to Eq. (2.14) can be

obtained by multiplying Eq. (3.20) by L-Mf and combining the resulting equation

with an/oi.

No special treatment is needed at the exit if the outflow is supersonic. For

subsonic outflow, the back pressure is usually specified. Thus, a procedure similar

to Eq. (2.15) can be applied at the exit.

At the centerline of the nozzle, the dependent variable Q vanishes, since y is

identically zero. Therefore AQ is always zero at the centerline. Flow variables can

WO m_
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be calculated after each iteration, by symmetrical conditions,

v-0

•-=0

clyap
•-'0

8--0.

01,

At the wall, the MOC type procedure can be obtained for inviscid flows by

specifying V = 0 to reflect the tangency condition and selecting the decoupled char-

acteristic equations corresponding to outgoing characteristics. For viscous flows, the

MOC procedure is not valid, the no-slip conditions,

U 0
(3.21)

V-0

together with zero normal pressure gradient and the specified wall temperature,

oan (3.22)

T T.,

can be used instead. Here, T,,, is the specified wall temperature and n denotes the

direction normal to the wall. The last equation can be replaced by adiabatic wall

or specified heat flux conditions with POT/an = q"(ý).

There are two different methods to apply these no-slip conditions at the wall.

First, AQ can be set equal to zero at the wai; 1131 when solving the discretized

equation, Eq. (3.20). Then flow variables are calculated according to Eqs. (3.21)

and (3.22) by using the updated Q from interior nodes. In this way, solutiors at the

wall lag those of the interior nodes by one iteration step, thus we cAn refer to this

method as an explicit-type boundary procedure. Alternatively, the unknowns at the

wall can be coupled to the unknowns at 'he interior points 1141 by relating AQ at

-. - -~-c.- -- t
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wall to those at interior nodes according to the no-slip conditions. In this approach,

the flow vgriables are forced to obey Eqs. (3.21) and (3.22) at the new time level.

This approach solves the unknowns at wall and interior nodes simultaneously, and is

referred to as an implicit-type boundary procedure. In the following, both boundary

procedures are implemented at wall boundaries and their effects are identified.

3.2.2 Stability Analysis of the ADI Scheme

The stability behavior of the implicit ADI scheme has so far not been iden-

tified. By applying the double Fourier transform[241 to the fully implicit scheme,

Eq. (3.18), we have

L 1 Q n+1 L2ý

so that the amplification matrix C is

G = Li'1 L2

where, L, = I + CFI and L 2 = I with CFI given by

Cr, = -AtD + i sinw•A + a-t sinw,,B + 2----. (1 - cos w)(RI B, + R 2BO).

For the implicit ADI scheme, L, and L 2 are Li = I + CF1 + CAD! and L 2

I + CADI, with

At2

CADI = sinw( sinw,1 A(I - MD)-B

+ 2 Aý[A 2 sinwf(cosw, - 1)A(I - AtD)- (RIB.I - R 2BD2 ).

The matrix CADI is the contribution due to the approximate factorization. In

these expressions, w, and w, represent the wave numbers in ý and 17 directions,

respectively.

As stated earlier, the numerical stability is controlled by the magnitude of the

maximum eigenvalue of the matrix C. The variation of the maximum eigenvalue
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as wf and w,7 change from 0 to r constitutes a three-dimensional surface. To make

the results'more readable, only the variation along the diagonal line (W( = w,,) on

the spectral plane is calculated. Figures 13 and 14 compare the results of the algo-

rithm described above with and without approximate factorization. The flow Mach

number is 0.5 and the Reynolds number is 10' for both cases. The time step size

At is determined by the CFL number based on U + Cf. The maximum eigenvalue

is shown to be always less than unity for the fully implicit scheme, and hence is

unconditionally stable for the two-dimensional TLNS equations. As the CFL num-

ber increases, the maximum eigenvalue at moderate wave numbers (around ?r/2)

decreases. This implies that the convergence rate will be speeded up by increasing

the CFL value.

For the ADI scheme, the approximate factorization alters the shape of stabil-

ity curves substantially, especially when CFL is large. In general, the maximum

eigenvalue at the mid-wavenumber condition is much higher than that of the fully

implicit scheme and approaches unity as the wavenumber increase. The results on

the figure suggest that the ADI algorithm has an optimum convergence rate at a

finite value of CFL.

Effects of the flow Mach number are indicated in Fig. 15, where consecutive

cases are calculated for several Mach numbers with a CFL number of 10 for the ADI

scheme. The eigenvalues approach unity for a very low Mach numbel (10-2), thus

slow convergence can be expected. As the Mach number increases, the eigetivsiltpe.

near low and high wave numbers decrease, thus better convergence is implied. Al-

though not shown here, effects of the flow Reynolds number on stability curves a-e

less prominent as compared to those of the flow Mach number and the CFL number

for the present local stability analysis.
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Figure 13. Stability results of 2-D fully implicit scheme without
approximate factorization
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Figure 15. Stability results of 2-D implicit ADI scheme with

approximate factorization for various Mach numbers
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3.2.3 Results and Discussion

The flow through an axisymmetric converging-diverging nozzle with the wall

shape defined by the radius variation,

r(x) = -2(.4R - I)x 3 + 3ARX2 + I

is calculated for illustration. Here AR is the ratio of the throat radius to the

inlet radius. The geometry of the nozzle and a representative grid are shown in

Fig. 16. Computational results are shown in Figs. 17-19. Two typical cases are

calculated, including a pure subsonic flow, and a transonic flow through the c-d

nozzle with AR = 0.8. The grid is 50 x 30 with 30 in the cross-stream direction for

inviscid calculations and is 50 x 50 with a strong clustering near the wall for viscous

calculations. The viscous grid is shown in Fig. 16.

The computational results have indicated that the resulting Mach numbers

at the entrance are around 0.2 and 0.4 for the subsonic and the transonic c-ses,

respectively. Figure 17 shows the L-2 norm of the change in the dependent variable,

versus the number of iterations for the inviscid calculations by using the

inviscid grid. Corresponding results for the viscous calculations based on the viscous

grid are shown in Fig. 18. Both inviscid and viscous results show that the transonic

case converges faster than the pure subsonic case. This is due to the low Mach

number effects of the subsonic case.

The comparison of Fig. 17 and Fig. 18 indicates that "nviscid calculations con-

verge faster than curresponding viscous calculations. Ther, are two possible reasons

for this; one is the viscous diffusion inside the Doundary layer, the other is the grid

stretching near the wall. To understand which was controlling, the inviscid calcula-

tions are done on the viscous grid for both subsonic and .ransonic cases. The results

are also shown on Fig. 18. As is seen, inviscid calculations based on the viscous



60

Figure 16. .Nozzle geometry for 2-D transoni~c calculations
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Figure 17. Convergence of 2-D ADI scheme on uniform grid
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grid give almost the same convergence rates as viscots calculations. Therefore, we

can conclude that the grid stretching deteriorates the convergence.

The optimum CFL number for all calculations is around 5, which is typical

for a factorization scheme At a CFL number as low as the order of 10, further

numerical experiments with the ADI scheme show that the explicit or the implicit

wall boundary procedure has no effect on the convergence. Computed flowfield

re3ults are shown in Fig. 19 where Mach number contours for the viscous transonic

case are plotted.

The ADI algorithm has also been applied to a pure supersonic calculation. To

avoid the presence of shock waves, a 15 degree conical nozzle with an expansion

ratio (the exit area to the inlet area) of 30 and an inlet Mach number of 1.02

is calculated. Figure 20 shows convergence curves for both viscous and inviscid

results. Comparisons with Fig. 17 and Fig. 18 show that tile inviscid supersonic case

converges faster than the inviscid transonic calculation, while the viscous supersonic

case is as slow as the viscous subsonic case. Although these preliminary supersonic

calculations show fairly good results, further numerical experiments oil a higher

expansion ratio nozzle (100:1) have indicated that the analysis code based on the

central-differenced ADI scheme is difficult to start with an arbitrary assigned initial

guess. Usually a very low CFL number (around 1) has to be used at the initial

stage. Also, the convergence rate deteriorates as the area ratio increases. Addit ionnl

experiments of transonic flows through tie convergent-divrgent nozh,1 tI-l,;-,

above ihow that as the size of the divergent section increases by a certain arno•I:?,

the central-differenced code becomes unstable and diverges and the upwind-central

differeiicing method described later is recommended.

The computational results above illustrate that the implicit ADI procedure is

efficient for flows at transonic speeds. For flows which are predominantly super-
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sonic, such as those flows through high expansion ratio nozzles, the implicit ADI

procedure i's inefficient and sometimes even unstable. By contrast, our stability re-

sults have indicated that high Mach rumber flows should converge faster than low

Mach number flows. The reason for this contradiction is as follows. Although high

Mach number flows have stronger damping effects than lower Mach number flows,

once the flow becomes supersonic, the equation set is hyperbolic in the streamwise

direction since all eigenvalues of the Jacobian matrix A are positive. This hyper-

bolicity implies only upstream events can affect downstream events, however, the

rentral-difference formulation in the ADI scheme allows upstream propagation. In

the earlier stages of a computation, this upstream influence keeps on propagating

wrong information (from the vrnconverged solution) from downstream back to up-

streL•., and consequently slow.i down the convergence. This also explains why the

cod. is difficult to start for superson',c cases.

3.3 Stabilit3' Consideration of Uowind Algorithms

As we have seen in the previous section, the imp'icit ADI algorithm becomes

inef lent wher the flow is predominantly supersonic due to the fact ,hat the central-

difference formil1.tion allows the downstream itifluence of the unconverged -olutiot.

Lo propagate "just:earn. To avoid this unwanted upstream propegatiomi, upwind

schemes appear to be desirable. The basic ide- of a upwind difTerezjce i.- to model

the physics correctly by using a difference stencil which involves only windward

information, hence "wrong" propagation is prohibited. The upwimed-difTerenco for-

mulation is clhosen to develop suitable numerical algorithms for supersonic calcula-

tions. Based on the .uccessful application in one-diinersional flows, the flux-vector

.,pi:.:.*,ng algorithm 1161 will again be utilized to develop unwind algorithms. [ij*.

fore formulating the detail of thc numerical procedures, the .,tability analysis of a

modeled scalar equativn is conisidered for several possible solution procedures.

- ----- mono
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To simulate present two-dimensional viscous flows, the Burger's equation,

au + du 8u au a 2u
T+a +a- +b 2 = -(3.23)

is chosen as the modeled equation, in which a+ and a- are positive and negative

constants, respectively. The second and the third terms on the left hand side are

used to simulate the flux-splitting in the streamwise direction, where the flow is

predominantly supersonic. Again, these terms must be differenced according to the

windward directions. Although second order upwind differencing will be used to

formulate the numerical procedures for Navier-Stokes calculations; for the modeled

equation, only first order accurate differencing is considered. The last term on the

left hand side irr plies that central-differencing will be retained since no preferable

windward direction exists on the cross plane. The second order term on the right

hand side is used to model the thin-layer viscous diffusion.

3.3.1 The Fully Implicit Scheme

Direct application of the Euler implicit scheme to Eq. (3.23) results in

a a ha 82

l+ At(a+ a -+ -- a -- +)JAu =-,t, (3.24)Tx dXr ay 81,2

where, r is the residual given by

Ou Ou b8u a2 u.
r = (a+T + a-5 + b - 5Y2

The amplification factor gir for Eq. (3.24) can be easily found to be

1
I1 + C.-

where, CrI is

Cr, = a,(] --cosw, +i sini) +•; (cosw,' -i-sinw, - I )-+ ir•sinw,+2L(l - cos .).

,ill M•l
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The parametors, c?+,0c",and a. are CFL numbers defined by

+ a+At a-At bAt
OZ 2- A:E' '- t Y- V J'

The parameter u is the van Neumann iumnber defined by

gat

As stated earlier, the direct solution of a fully implici. scheme is impractical

in multi-dimensions, hence approximate factorization is necessary. A number of

approximate procedures can be identified for solving the left hand side operator in

Eq. (3.24). Of them, three factorization procedures will be discussed.

3.3.2 The Standard ADI Scheme

The first approximate procedure is to split the operator in Eq. (3.24) as

+At(a- a a 1 + (3.25)

Equation (3.25) is analogous to tile implicit ADI procedure, except upwinding has

been used in the streamwise direction. This splitting generates error terms on the

left hand side of order At 2. The resulting amplification factor QADI for Eq. (3.25)

is

1+ 0,ADIgAD! = 1 + CrI + CADI

where,

CADI,= iO'c(l -- cosw,, -- ilsinw2 )sinwt,, + ioo(c-s,, + I sin w - 1) sinw,,

"+ 2osV (I - cos,, 7 + i sin W.)(1 - cuswY)

+ 2a v(cos w, +- Isin w - 1)(1 - cob,.,,)

is the summation of factorization error terms.
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3.3.3 The Dlagonally Dominant AD! Scheme

The second splitting under consideration is the diagonally dominant alternating

direction implicit (DDADI) method suggested by Lombard 1141. This splitting,

when first order upwind differencing is used, can be expressed as

d ta+ 1 928 Ata- 2
Ad -+t(b'y- y2 )Id- Id+- + u+l".+At(b L2-I_-A )1U = -Air

Ax 3y (y 8E y ay2
(3.26)

where d is the summation of diagonal elements given by d = 1 + (a+ - a-).

Equation (3.26) can be solved directly by using alternating forward and backward

sweeps. Alternatively, it can also be solved by using the line Gauss-Seidel relaxation

by MacCormack 1151 and Chakravarthy 1171. This method has also been referred

to as the single-level scheme by Lombard 1191, and the LU scheme by Yoon and

Jameson 1181.

The line relaxation method for the DDADI splitting is discussed as followb

First, Eq. (3.16) can be split into,

a a• At (.
Id + At(by - 12 )Au" = -Atr + A-" &'u:-a" (3.27)

and
a a2 At

Id + At(b--- - 1•)2 u dAu ,+,a (3.28)

Equation (3.27) can be rearranged as

a a2 U du ou 13211
Id + At(b -P -)Au" = -Atla+u"' (a (a b-. 2

(3.29)

Equation (3.29) is lower hi-diagonal and can be solved by marching from the up-

stream toward the downstream at each cross-streain station after obtaiflijag u- ,,

from the iteration at previous stations. Similar to this forward marchig proce-

dure, we can define a symmetrica' 1 ackwsrd marching procedure by substitutintg
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Au" from Eq. (3.27) into Eq. (3.28) and neglecting unnecessary terms iik order to

make the rsulting right hand side residual to be consistent with the steady state

equation, r = 0, as Au is driven to zero. The resulting backward marching equation

can be written as,

a a02 -,+ du (a.u+ 2UId + At(b -- . )]Au = --ita- - + (a+ T+ )'.. __0 2  A +', 8x a•, - 1.•T

(3.30)

Equat"on (3.30) now can be solved by marching from the downstream toward the

upst:'aLn using the updated value of u+1, at the t + 1 station. The combination of

Eq. (3.7.9) and Eq. (3.30) completes one iteration step of the line-relaxation method

for the DDADI splitting.

The amplification factor g" for the intermediate forward marching, Eq. (3.29),

is

U t.. in w-)1 =. = ,(cosw. +isn )
u" 1 + oa+ (I - cosw, + isin. 2 ) - c- + tosin w + 2v(1 - cos w.)

and the amplification factor g*o for Eq. (3.30) is

un+I I + a+(cosw. - isinw , )
° 1 . I- oz+ +o-(cosw, -+ i sinw. - 1) + tosin w + 2v(l - cos W,

The overall amplification factor is then

9DDAD' = g'g'" (3.31)

3.3.4 The Parabolized ADI Scheme

The third algorithm considered is the splitting,

a a b92 9
11 + A(a+- + b - -- )I(i + Ata- T),au = -- Atr. (3.32)

As we shall see in the next section, the first operator on the LHS in similar to a

parabolized Navier-Stoke (PNS) marching operator, hence, Eq. (3.32) is referred to
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as a PNS-ADI splitting. The amplification factor for this splitting can be found to

be,
1 + CPNs

gPNS-ADI I + CF+CS (3.33)I +t CFI1 +t CPNVS

in which,

CPNS = Va-(1 - cosw, + isinw,)(cosw, + zsinw, - 1)+

io'O.(couw. + isinw, - 1)sinwy + 2ca.-v(cosw. + isinw. - 1)(1 - cosw1 1 ).

Note that if a- vanishes, the error CpNS is zero and the PNS-ADI splitting is

equivalent to the fully implicit scheme.

3.3.5 Algorithm Comvarisons

The amplification factors for all four algorithms noted above can be numerically

computed over the entire spectral plane for w, and w. ranging from 0 to 7r. Again,

to make results more concise and readable, only the variation along the diagonal

line (w. = wy) on the spectral plane is calculated. Two cases are studied, they are,

1. Subsonic : ,r+ = -o- = Oa = v = CFL

2. upersonic: a+ . oC = V = CFL, a; = 0

The first case is analogous to the subsonic flow, where both upstream and

downstream propagations are significant. The second case simulates supersonic

flow by setting a- = 0. Both cases assume uniform CFL numbers in the x and y

directions.

Results of these two cases are plotted on Fig. 21 and Fig. 22 for a CFL, of

10. For the first case. both the fully implicit and the DDADI algorithms give

monotonically decreasirng eigenvalues, and these eigenvalues reach their minimums

at the wavenumber ir. The eigenvalue first decreases, then increases to a local

maximum near the wave number ir for the ADI and PNS-ADI schemes. In the

second case, all algorithms except the ADI splitting give monotonically decreming
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eigenvalues. This if due to the factorization errors of the ADI splitting even when

a- is zero.'The eigenvalue of the DDADI splitting is slightly smaller than that of

the fully implicit scheme and the PNS-ADI splitting in the second case. Again, the

naturally dissipative characteristic of upwind schemes is observed by noting that

the eigenvalues are much less than unity near the wave number ir.

As a final test case, the effects of CFL numbers on the magnitude of the eigen-

values are shown in Fig. 23 for the subsonic case (a- $ 0). As can be seen, increasing

the CFL number tends to magnify the eigenvalues for the PNS-ADI splitting, thus

a CFL number of 103 is inferior to a CFL number of 10 as far as convergence is

concerned. On the other hand, the DDADI splitting is insensitive to the CFL num-

ber. Effects of the CFL number on ADI and fully implicit schemes are similar to

those on PNS-ADI and DDADI schemes, respectively.

Among the four algorithms, the fully implicit scheme and the DDADI splitting

can be expected to give better convergence rates than the other two splittings,

since they have smaller eigenvalues over the entire spectrum. The DDADI splitting

is superior to the other two approximate procedures and is as good as the fully

implicit scheme. The PNS-ADI splitting will give better convergence than the

standard ADI splitting since they have similar behavior in subsonic regions (a- t 0)

and the PNS-ADI scheme is more dissipative in supersonic regions (a- = 0). All

four algorithms can be shown to have eigenvalues always less than unity, lence I hey

are unconditionally stable for the two-dimensional Burger's equation.

Based on the results of stability analysis, the proposed hybrid algorithm which

uses upwind difference in the streamwise direction and central difference in thf,

cross-stream direction proves to be unconditionally stable for the Burger's equation

for fully implicit and all three approximate procedures investigated.
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The stability results discussed above are based on first-order upwind difTer-

encing and' the scalar modeled equation. For algorithms based on more accurate

second-order upwind differencing and the vector equation, the stability results may

be quite different from the results given above. For instance, the approximate fac-

torization error term associated with the product of a+,/zx and a-cl/lz in the

Parabolized ADI scheme (Eq. (3.32)) reduces to zero for the vector equation since

A+A- is identically zero for both the subsonic and supersonic cases. This implies

that the PNS-ADI procedure will give better convergence than that predicted by

the stability analysis based on the Burger's equation. In the following discussion.

this hybrid algorithm will be utilized to formulate numerical algorithms for viscous

supersonic calculations.

3.4 Alkorithms for Viscous Supersonic Flows

As is well known, the hyperbolic nature of supersonic flows allows inviscid prob-

lems to be computed in a single pass. This capability is lost in viscous flows for tyvo

reasons. The first is the streamwise diffusion, but this is weak for high and even

moderate Reynolds number flows and may frequently be neglected, which results in

the TLNS equations. The second and more significant reason is the subsoniic region

near the wall. where upstream influences exist. From a physical point of view. thiis

subsonic region allows information to propagate upstream. This upstream propa-

gation prohibits a single pass solution and renders the space-marching proced,,re

unconditionally unstable. In the PNS approach, this upstream influence is removed

by a parabolized procedure which. neglects the contribution associated with this

upstream influence so that a single sweep solution is allowed 126-291. For problem.

with significant upstream influence, such as thick boundary layers inside the nozzles

15I and separated flows, global iterations are required. The main focus in this chap-

ter falls into this category, thus upstream effects must be retained by considering
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the global iteration from the Navier-Stokes equations. The simplification to PNS

procedures'will be discussed in the next chapter.

Based on the results of stability consideration, in discretizing the governing

equations, we can take advantage of the predominantly supersonic character of the

flowfleld by using flux-vector splitting in the strearnwise direction, while retain-

ing central differencing in the cross-stream directions. Again, using Euler implicit

differencing in time, the result can be expressed as

n"+ 1 - Qn a+ aE- 8F - a aQ1 i +1

+ + -- +--(R,- + R, 2
3 ) =0 (3.34).At 8 v

If we assume the flux vector E is homogeneous, it can be split according to

t P,+ + k- = A+, + A-Q.

Matrices A+ and A- are the split Jacobian matrices given by

A+ = M CA+Mý 1 , A- = M 4A'M 4

in which,

At = (A4 + IAcl)/2, A= (A4 - IA(I)/2.

The quantities E+ and E- have to be upwind differenced according to the signs

of their individual eigenvalues. In supersonic regions, E- vanishes and Eq. (3.34)

provides an algorithm which can be solved by a marching procedure in the ý direc-

tion. The difficulty is that the supersonic region is coupled to the subsonic reginn

where upstream influence exists. Consequently, both regions must be solved rielli-

pie times. The following discussion formulates numerical procedures for Eq. (3.34)

based on the algorithms consieered in Section 3.3.
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3.4.1 The Standard ADI ProcedUre

The first procedure considered is th, standard approximate factorization 18,91

of the upwind differenced system. In this procedure, the ý and ,q directions are

split, and the discretized version of Zq. (3.34) in delta form becomes,

lI-AiD + At( At , -At)I(I - atD)-C (3.35)a a £9

[I-AtD + At B - At --- (R I-aB , + R2- B..)a A =-AtR'

where, the residuLl vector R' is,

aE+ aE- aF - a 1QI 4QRf = I ++ T--H - F(R --+ R2~2  (3.36)49C aý '7'7(R'57 11

The Jacobian matrices At and A- are,

A'+ = i A 7 a= Ic
aQ o

where the subscripts t are used to distinguish the true Jacobians A* from the

matrices A+. The first operator in Eq. (3.35) is block penta-diagonal for second

order upwind differencing and is block tri-diagonal for the first order scheme. The

solution procedure of Eq. (3.35) is similar to that o- the implicit. ADI scheme and

will not be repeated here.

3.4.2 The Diagonally Dominant ADI Procedure

The second approximate factorization procedure is the DDADI method. To

express this algorithm, we must discretize the equation in ý and t before factoring.

The explicit discretization in Y7 is not necessary to specify the algorithm and the

derivatives in ?7 imply central differencing. The basic philosophy of the DDADI

procedure is to place as many ternis as possible on the diagonal element before
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splitting. This procedure can be expressed as

A'tý- 7 A-•A +At[ A++ B- (R a ,a + aB2)1)
At t atD -B- n t all

At +
(I - AiD + ;c-(A, -A-)]

(I-AtD+ 7-At+ +At[5 A - - -(RI-B i - + R2 B+s)1}A(

= -AtR'
(3.37)

in which, k = 1 + ic/2. The quantity Pc is zero for first order upwind differencing

and is one for second order upwind differencing.

Similar to the derivations discussed in Section 3.3.3, t~ie DDADI splitting will

be solved by the line Gauss-Seidel relaxation method, which includes the forward

marching,

a a9 a a
D + - B--+ - -A ,-B ,- + R 2 --B- 2 ),} Q =

and the symmetrical backward marching,
{D'+At--"B- +I(R ';B)i + R+Bv2 )t}AQ-=

- - + I" - ,+-,,, +

At 22At

+ I -E- + oF_ ý- a(a'-RiQ)

(3.39)
where, A" = Q" - Qn and AO"+l = - Q* are used to update variables

immediately after each forward or backwad sweep. respectively. The diagonal term

D' is,

At 2At

S= - AtD 1 +(At - AT).
:~~~ +..... .... (R ! .... . . .... ..i . .. . .. . . . .[ . . ...
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Both forward and backward marching operators involve the solution of a block

tri-diagonal matrix. The combination of Eq. (3.38) and Eq. (3.39) completes on,

iteration step.

3.4.3 The PNS-ADI Procedure

The third approximate factorization procedure considered is also a forward-

backward scheme that is designed to give a PNS-Iike sweep in the forward direction

and a partial backward sweep that is required only in those regions where the flow

is subsonic. Because of its analogy with PNS algorithms, this procedure is referred

to as a PNS-ADI scheme. This scheme can be described as,

{I - ,tD + At-•,,A+ + aB- a-(R,., B,, + R2 -BI, 2 )i)(V - AtD)-'

(I - ,tD + At a.Ai-)A, = -,tR'

(3.40)

As will be shown later, the first operator is exactly the time-iterative version of a

13NS procedure, as will be discussed in detail in chapter 4. Again, this operator

is block tri-diagonal at each ý location. The last operator reduces to the identity

operator in jupersonic regions where A- vanishes, and is only block bi-diagonal

in subsonic regions. Thus, in supersonic flows, the PNS-ADI procedure becomes a

marching procedure, but in subsonic regions it retains the influence of the upstr,'am

acoustic waves. Because the backward operator is only necessary inside the subsonic

layer, the computational time involved in one iteration for this PNS-ADI algorithrm

is less than that for the DDADI algorithm.

3.4.4 Direct Solution by Flowfield Partitioning

For a typical high Reynolds number supersonic flow, the flowfield can almost be

solved by a pure marching procedure. Only the thin subsonic layer adjacent to the

wall prevents this marching algorithm. This suggests a direct solver based on the
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flowfield partitioning according to the distinct physical nature of this predonialvt IIv

supersonic flow. As is given in Fig. 24, the flowfield is partitioned into three parts.

Domain A is composed of all the points that are supersonic. Domain B includes all

the points that are subsonic (although it may also include some supersonic points).

Domain C is the interface line between domain A and domain B. It is chosen such

that all points on the line (domain C) are supersonic. Let QA, Q,, and Qc- denote

all the dependent variables in these domains. These unknowns are related by

AAQA +-CAQC = RA

BBQB + CBQC = R& (3.41)

AcQA -t- BcQB + CCQC = RC

which indicates that the unknowns in domain A are coupled only to unknowns at

domain C and are independent of unknowns at domain B. Similar statement holds

for domain B, while domain C is coupled to both A and B.

Since all points are supersonic at domain A, the operator AA can be efficiently

solved by a marching procedure. The operator BB is block tri-diagonal with block

size equal to 4 x JO, (JB denotes the number of points in 17 direction inside domain

B). This block tri-diagonal matrix is large, bet the size decreases rapidly as the

number of subsonic points decreases (as for thin subsonic layers). Both QA and

Qa can be solved easily if the unknowns Qc" are given. In fact, QC can be solr."d

according to

IAcAA'CA + Bc-B•Cp -Cc IQc = AcA•'RA + BJ-c?'Rp - Rc" (3..12)

which is obtained by the substitution of the first and the second equations in

Eq. (3.41) into the last equation. The left hand side operator of Eq. (3.42) is a

dense matrix with the size equal to 4 x I, with I reprewenting the number of points

in the ý direction for the entire computational domain. This matrix call be effi-

ciently solved by an iterative method in 4 to 6 iterations, because the influence of
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downstream points on upstream points is weak if all points along domain C are

supersonic.' This partitioning technique allows a direct solution procedure to be

obtained. The direct solution without any approximate factorization implies the

CFL number can be as large as possible, thus rapid convergence can be obtained.

However, the computational time involved In one iteration for this direct method is

much more than those for approximate procedures if too many subsonic points are

involved.

3.5 Algorithm Comparisons

Based on the physics of supersonic flows, four different upwind algorithms asso-

ciated with their stability analyses are discussed in the last two sections. However,

the computational efficiency of these numerical procedures is yet to be identified.

Before comparisons to be made, two concepts must be paid attention to. First,

we note that all four methods described above are concerned with using different

algorithms to solve the same equations. The residuals on the right hand s;die of

Eq. (3.35), Eq. (3.37), Eq. (3.40), and Eq. (3.41) are identical in terms of both par-

tial differential equations and finite difference representations. As LAQ is driven to

zero, all four methods provide the same steady state solution as given by Eq. (3.36).

A check of the converged solutions from the computer codes verifies that these so-

lutions are identical to six or seven digits. Second, since all methods give tlc same

solutions, the only thing to compare is the path a specific algorithm takes to steady

state. Therefore, it is of interest to compare both the number of it-rations rerliired

for AýQ to reach the machine accuracy and the total CPU time required. The numn-

ber of iterations required shows the numerical efficierncy of cach algorithm, while the

CPU time required indicates the cost per iteration step. The latter is affected by

the arithmetic operations involved in an algorithin and the computer architecture.

Present results are for the scalar machine, IBM3090-180. Slightly different results
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may be obtained for a vector machine.

The test problem for the comparison follows is the laminar supersonic flow

through a 150 conical nozzle with an expansion ratio of 30. The nozzle geometry

and the 21 (axial) by 40 (radial) grid are shown on Fig. 25. At the starting plane,

a constant Mach number flow (M = 1.02) with zero contravariant velocity V was

chosen. The nozzle Reynolds number based on the throat radius is 105 . Tile

converged solution showed that with this highly stretched grid, the subsonic portion

of the boundary layer had grown to nine points at the exit plane. All calculations

are done without artificial viscosity for the upwind-central differencing formulations.

Boundary conditions are implemented by the procedures given in Section 3.2.1.

Convergence rates based on the number of iterations for the four algorithms

mentioned above are shown in Fig. 26. The linear convergence on these semi-

logarithmic plots until machine accuracy is reached gives indication that the codes

are error-free. All calculations started with initial conditions which were obtained

from the single forward sweep through the flowfield with the PNS algorithm (The

details of PNS algorithms will be given in chapter 4). The result shown for each

algorithm corresponds to the optimum CFL for this scheme. These optimums are

shown in the figure. Boundary conditions are implemented by the implicit wall

boundary procedure. In terms of number of iterations required the ADI scheme

is seen to be the slowest. It also has the lowest optimum CFL of 5. The DDADI

scheme is the fastest of the three approximate methods and converges almott. ms

rapidly as the direct method. The DDADI algorithm converged most rapidly wilhi

CFL at 5000, above this value, convergence becomes independent of CFL.

Figure 26 also shows that the PNS-ADI algorithm gives excellent convergence

(it converges to machine accuracy in 70 itereations). This rapid convergence was

not properly predicted by the stability analysis based on the scalar equation. The
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optimum CFL Zor 'he PNS-ADI procedure is around 100, beyond that, convergence

rates tend to slow down. The optimum CFL for the direct solver was about 1003

and the convergence remained the same for CFL numbers up to 1010. The conver-

gence rate for the direct procedure was somewhat disappointing in that it required

25 iterations to reach the machine accuracy. With the fully implicit scheme, the

numerical procedure can normally converge to machine accuracy in 8 - 11 iterations

1421. This normal convergence was not obtained with the current analysis code.

Comparisons of convergence rates in terms of CPU time are shown in Fig. 27.

The ADI method is seen to require the most time to reach machine accuracy. The

direct method is just slightly faster than the ADI method; however, if we could

attain a factor of three improvement expected above, it would be competitive with

the fastest procedure. The PNS-ADI and the DDADI schemes are quite competitive

and are about a factor of ten faster than the standard ADI scheme. Although, in

terms of number of iterations, the PNS-ADI method is slower than the DDADI

method, the deficit is seen to be offset by less computational work involved in one

iteration for the PNS-ADI procedure.

As demonstrated in Chapter 2, the use of the true Jacobian has significant ef-

fects on converge:ice. The same comparison was made for all four methods by using

approximate Jacobians A' instead of A+ on the left-hand side of corresponding

discretized equations. The convergence rates in terms of both number of itera-

tions and CPU time are shown in Fig. 28 and Fig. 29. All procedures except the

ADI method slow down substantially due to the approximation in Jacobians. The

convergence rate (both in terms of iterations and CPU time) for the ADI method

actually improves slightly. This shows that the convergence rate for the ADI schertm

is insensitive to the Jacobian matrices. Note also that corresponding optimum CFL

numbers for three approximate methods change if approximate Jacobians are used.
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3.8 Nozzle Flowfield Predictions

To demonstrate the capabilities of present upwind-central difference algorithms,

the flowfields in two nozzle geometries were computed. The first geometry was .he

150 conical nozzle shown on Fig. 25 except here a 21 x 70 grid was used. The second

nozzle was the contoured geometry shown in Fig. 30, with a grid of 75 x 50. The

area ratio of this nozzle was 272 : 1. In both nozzles, a throat radius of 10 mm. was

chosen.

The properties of a typical rocket nozzle combustion gas were used for all

ce.lculations, including -y = 1.24 and Cp = 3043J/Ig(K1(. Both nozzles were ruel at

tie stagnation pressures of 35 and 3.5 atm., corresponding to nozzle throat Reynolds

numbers of 1.4 x 1 and 1.4 x 105. The stagnat'on temperature was chosen to be

3500'F. The results for the conical nozzle were for laminar flows with the molecular

viscosity varying according to the Sutherland law,

A T 3/12 T+ S

,r T, T + S

where, p, is the reference viscosity at a reference temperature of T, and S is the

Sutherland constant. Those results for the contoured nozzle were calculated for

both laminar and turbulent flows. For turbulent caiculations, the algebraic model

by Baldwin and Lomax [121 was used.

3.0.1 Verifigation of Solution Accuracy

To verify the accuracy of present upwind-central differencing algorithms, tile

resuts obtained from present analysis codes are compared to those from the ,1OC

procedure 141. Figure 31 plots Mach number contours for the inviscid supersonic flow,

through the high-expansion contoured nozzle. The upper half shows results fromD

the MOC procedure and the lower half presents those from present algorithm-
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As shown here, the Mach number contours computed by using current upwind-

central diffirencing schemes agree very well with the MOC predictions, except for

the discrepancies near the centerline, where the MOC procedure fails to resolve the

symmetry conditions due to the presence of a weak oblique shock.

Figure 32 shows the comparison between current algorithms and the MOC pro-

cedure by plotting the computed wall pressure distribution along the axial direction.

Again, the inviscid results from current algorithms show excellent agreements with

those from the MOC procedure. The corresponding wall pressure distribution for

viscous calculations with a Reynolds number of 1.4 x 106 is also shown on the fig-

ure. The viscous wall pressure is slightly higher than that of inviscid results. This

illustrates that viscous flows expand less due to the presence of the boundary layer.

3.6.2 Effects of Downstream Boundary Conditions

All numerical algorithms mentioned above require a downstream boundary

condition at the subsonic part inside the boundary layer, since the eigenvalue U - C4

is negative if U < Cf. Previous researchers have usually impleme.ted this boundary

condition by extrapolating from :nside the computational dlomain. Although this

does simplify the numerical procedures at the downstream boundary, it violates

the physical conditions, especially when the boundary layer is thick. Further. an

extrapolated boundary condition does not allow flowfields to respond to downstream

pressure changes as they must in physical situations. In the case of nozzle flows, a

high back pressure will cause the boundary layer to thicken and the. flow Io separate.

One case of interest is when an exhaust nozzle is operated in an altitude facil-

ity where the ambient pressure in the facility is only approximately matched to the

nozzle expansion characteristics. This mismatch can provide significant differences

between test stand performance and eventual performance in space because of the

effect of the ambient pressure on the nozzle boundary layer at the exit. An analo-
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gous but much more severe result of this mismatch is that flow separation ocrurs

inside the thick boundary layer of an altitude nozzle when it is operated at. -ea-level

conditions. The examples shown later will refer only to the case of small back pres-

sure mismatches and will not extend to the massive separations that are observed

at sea level conditions. Calculations of these effects require that the downstream

boundary conditions be correctly implemented.

The downstream boundary conditions for the present ir --cigation are based

on MOC procedures. At the early stages of iteration, a cevtain number of points

at the exit plane will become subsonic due to viscous diffusion. The back pressure

is then specified for these subsonic points on the exit plane. The procedure used

is similar to that in Eq. (2.15). As the iteration proceeds, reverse flow will appear

inside the subsonic layer if the back pressure is high enough. For these reentry flows,

three eigenvalues (U, U, and U - Cf) become negative(assuming the reentry velocity

is less than the sonic speed) and standard inflow boundary conditions are applied.

This implies three conditions must be specified from outside the domain while one

characteristic equation must be used for information coming from inside the domain.

These three specified quantities are chosen as the stagnation pressure, the stagnation

temperature, and the flow angle, corresponding to the ambient conditions. Since

the external surroundings are interpreted as being at rest, the stagnation pressure

is taken as the back pressure. For those subsonic points with positive (outflow)

streamwise velocities, only the back pressure is specified and three equations are

used in agreement with traditional outflow boundary procedures. The decision als

to whether inflow or outflow boundary conditions are used depends on the signs of

eigenvalues at each grid point as determined from the previous iteration. The above

procedure for reentry flows is reliable for modestly sized recirculation regionsM but

eventually breaks down for large recirculation regions because oscillations between
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inflow and outflow occur.
I

Results of a series of calculations in which the pressure at the subsonic part

of the outflow boundary was specified are shown on Figs. 33-38. Figure 33 shows

Mach number contours for the conical nozzle at the lower Reynolds number. The top

plot shows the results by using extrapolation boundary conditions. This boundary

condition resulted in a back pressure to stagnation pressure ratio Pb/P 0 of about

2.5 x I0-3. The high Mach number gradient near the wall gives an indication of the

boundary layer thickness. The middle plot shows the effect of raising the back pres-

sure to Pb/,P° = 5 x I0- 3 . At this back pressure, the boundary layer is thicker and

a small recirculation zone presents near the exit. As the back pressure is increased

further, this recircu!ation region continues to grow and to propagate upstream as

indicated by the bottom plot where Pb/P 0 = 7 x 10-3. Corresponding calculations

with back pressures below 2.5 x 10-3 showed that the boundary layer at the exit

accelerated and became thinner. The wall temperatures for these calculations are

30000 K.

The dotted lines iti Fig. 33 represent the Mach number contours from one-

dimensional inviscid calculations corresponding to the same stagnation conditioms.

As is seen, the presence of the boundary layer in the two-dimensional calculations

has resulted in less expansion and thus slower speeds near the exit.

As a further indication of the character of these flows, the axial velocity (u)

profiles at the exit plane for various back pressure levels are shown oni Fig. 3,1.

This figure shows how the boundary layer grows as the back pressure is icrea.sed

and the rate of thinning of the boundary layer as the back pressure is decreased.

Furthermore, the width of the recirculation zone at the exit plane is clearly shown.

The results for turbulent flow in the contoured nozzle at the higher Reynolds

number (P0 = 35atm) are shown in Fig. 35. Again, the top plot shows Nlach
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number contours for the extrapolated boundary condition case. The middle and

the bottom 'plots show the results of higher back pressures. The extrapolation case

here corresponds to the back pressure ratio Pb/P° of 0.33 , 10- . The middle plot

is for a back pressure of 0.7 x 10-3 while the lower one is for 1.1 X 10-3. Simlar

thickening and separation of the boundary layer is observed.

Because of the interchange of momentum inside the boundary layer for tur-

bulent flows, a larger increase in Pb/P 0 is required to obtain the the same de-

gree of separation, as is verified by comparing the laminar flow results shown on

Fig. 36. For this laminar calculation, the extrapolated boundary condition cor-

responds to a lower back pressure (Pb/P 0 -" 0.29 x 10-3) than to the turbulent

case, because the much thinner boundary layer allows more expansion to be accom-

plished in the nozzle. Also, '.he laminar calculations show a larger separaLion region

at Pb/P 0 = 0.7 x 10-3 than the turbulent boundary layer at Pb/P 0 = 1.1 x 10- 3.

The u velocity profile at the exit plane for laminar and turbulent boundary layers

are shown on Fig. 37 and Fig. 38, respectively. The turbulent case has a tlicker

boundary layer and steeper gradients at the wall than the laminar calculation.

3.0.3 Effects of Reynolds Number and Wall Tempcrature

Although calculations wi'h two different Reynolds numbers have been shown i,

the last section, some additional results of changing Reyynolds numbers are deriioll-

strated here along with comparisons of the cffect of wall temperature. Figur' 39

shows Mach number contours for the conical nozzle at a Reynolds number of 1.I A lX4

but with a lower wall temperature of 300°K. The upper plot is for extrap°#lation

boundary conditions, and the lower one is for a back pressure of 7 x 10-3, analogous

to the bottom plot of Fig. 33. These results show that colder wall temperatures

give a much thinner boundary layer. As a consequence, a smaller separation region

is observed as compared to the hot wall boundary layei.

------------
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The effects of Reynolds numbers on the conical nozzle results can be seen by

comparing the Mach number contours for a stagnation pressure of 35 atm in Fig. 40

with those for the lower Reynolds number case with P0 = 3.5 atm on Fig. 33. Again,

a thinner boundary layer is obtained for the higher Reynolds number case. Only

the results based on the extrapolated boundary conditions are given in Fig. 40.

As a final comparison, results for the contoured nozzle are shown on Fig. 41 for

the low Reynolds number case (3.5 atm) at two different '-all temperatures, 3000'K

and 300*K, based upon turbulent boundary layer assumptions. As for the laminar

case, the colder wall temperature results in a much thinner boundary layer.

The effects of Reynolds number can be seen by comparing the results in Fig. 41

with those for the turbulent case in Fig. 35. Again, a lower Reynolds number causes

a dramatic increase in the boundary layer thickness. At this low Reynolds number,

a check of the maximum eddy viscosity in the boundary layer profile reveals that

the flow is no longer "turbulent" although the turbulence model is still included.

3.6.4 .ffects of CouRled Wall Cooling and Nozzle Flows

As we have seen in previous sections, the wall temperature has a s~gnificant

effect on the nozzle flowfleld. While specified temperature or heat flux boundary

conditions are frequently imposed at wall boundaries. In viscous problems, rocket

nozzle walls are in general regeneratively cooled by propellant flowing ilside tile

wall. This poses a problem when neither the heat flux nor the wall temperature are

known a priori but both must be completed as part of the nozzle flowfield solution.

In the present section, we develop a coupled method for solving the wall cooling

flow along with the nozzle flow.

Figure 42 shows the schematic of a nozzle surrounded with cooling tubes. The

coolant is assume to flow from the exit toward the inlet. To simplify the problem,

the following assumptions are made:
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Figure 41. Converged Mach number contLours for 272:1 nozzle at lower Reynoldsnumber
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Figure 42. Schematic of nozzle with wall cooling
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1. The outer wall of the cooling tube is insulated.

2. The whll between the coolant the nozzle flow is thin and of high conductivity

so that the temperature of the cooling liquid can be taken equal to that of the

wall(T•),

3. The cooling liquid has a constant specific heat (CI).

Let y. and n denote the radius and the inward normal direction at an arbitrary

wall location (f, q). Referring to Fig. 42, the energy balance of the control volume

at a wall location gives

rhCiT, + q"dA = vhCi(T, - .T -d)

where dA represent the surface area wetted by the cooling liquid. If the nozzle wall

is completely surrounded by cooling tubes, the quantity dA can be expressed in the

general coordinate system as

21ryJ,dA = -j V 7

By the Fourier's law and geometrical relations, the heat flux q" is

C1 =kT. _ k + aVr )ýw+(724%72 T
V'17 7+ ?7V2 ,7 ,7)f

in which, k is the thermal conductivity of the gas. Substituting expressions for q"

and dA into the energy balance equation, we readily obtain

+ a + 9 + 27 If = B± c r9 (3.43)

where j is the normalized wall radius (y = y,/yg) and B1 is the non-ditnetisional

Biot number defined by

rhC 1
21rkye"
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The non-dimensional Biot number represents the ratio of wall cooling to heat con-

duction in the gas.

The new thermal boundary condition, Eq. (3.43), can be coupled in an implicit

manner to the discretized governing equations provided that the temperature at the

downstream end of the wall (the inlet temperature of the cooling liquid) is given.

'The numerical procedure is based on the DDADI scheme. The wall temperature at

the exit is fixed at the given coolant inlet temperature. In the discretized equation

of Eq. (3.43), the derivative 8T•/81 is backward differenced since the coolant flows

from downstream to upstream. The derivative aT,,/ar is one-sided dflferenced

and is coupled to the unknowns of interior points. The implicit treatment of this

discretized boundary equation is similar to the boundary procedure discussed in

Section 3.2.1.

Typical Mach number contours for supersonic flows through the high expansion

ratio nozzle given in Fig. 30 by using this wall cooling boundary condition are shown

in Fig. 43. The top plot is for adiabatic wall conditions, the middle and the bottom

plots are for Bi = 103 and Bi = 10', respectively. The inlet temperature of

the coolant is 500 0 K for the last two cases. The Reynolds number is 1.4 / 10'

and the flow is assumed laminar for all cases. Dramatic changes in the boundary

layer thickness and the flowfield near the exit when this more appiopriate cooling

condition is incorporated can be observed. The results shown are for demonstration

only, for practical applications, the parameter Bi should be calctlated according to

the true wetted area of cooling tubes and real properties of the coolant..

3.0.5 Nozzles with Subsonic Inflow

So far, the examples of supersonic nozzle flowfield predictions we have seen star,

from an arbitrarily given Mach number distribution at the inlet. For real nozzles,

the flow enters the diverging section with a non-uniform Mach number distribution.
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To take account of this effect, the computation must begin with the subsonic section

of the nozzre. As we have shown, the transonic flow through the nozzle throat region0

can be efficiently calculated by the implicit ADI scheme. For flowfield computations

over realistic nozzles which contain a short converging-diverging section and a very

long diverging section, the following procedure is recommended. The nozzle can be

segmented into two parts. The first part contains the entire converging section and

a small portion of the diverging section. The divergent portion is chosen sufficiently

large to ensure the flow at the flow at the last few rows of grid points is supersonic

except for the boundary layer. The implicit ADI algorithm can be applied to this

transonic portion and the resulting flowfleld near the exit can be used as the input

for subsequtnt supersonic calculations for the remaining part of the nozzle. The

previously described supersonic algorithms can then be easily applied to flowfield

computations in the diverging section.

Typical laminar results of the computation over the contoured nozzle starting

from subsonic inflows by using the procedure above are shown in Fig. 44. The grid

is 300 x 50 with 300 in the axial direction and the Reynolds number is 1.4 x 104.

Comparisons with previous results using constant Mach number at the inlet (Fig. 41)

show that the two-dimensionality near the throat has only minor effects on the

flowfield results for this typical example.

3.0.0 Yerification of Global Conservation

It is generally agreed that for flows with discontinuities, the strong conservative

form of the equations plays an important role in global conservation. For flowfields

that do not contain discontinuities, the fully conservative form is sometimes assurried

to be less important. The primary application of present numerical algorithms are

for rocket nozzle flowfield predictions. To accurately predict the flowfield and noz-

zle performance, global conservation is of great importance; however, "good" nozzle
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designs will generally be free from shocks and it might be assumed that the non-

conservatiVe equations are adequate. Because of the importance of accurate global

mass conservation and to demonstrate the necessity of using the conservative form,

mass conservation was monitored in all analysis codes throughout the course of

this study. For better understanding of the necessity of the strong conservative

formulation, a few computations with the weak conservative form of the governing

equations were also done for typical high expansion nozzle flows without disconti-

nuities. The weak conservative formulation is identical to Eq. (3.9) except that the

metric coefficients are left outside the derivatives,

aQ + . E aE aF c7F ýE . + F5 + + + qH+ U +{ (3.44)

The global mass conservation results for this weak conservative and tile strong

conservative formulations are compared in Fig. 45 for the high expansion ratio

contoured nozzle. The 75 x 50 grid shown in Fig. 30 are used for both cases. As

shown on this figure, the strong conservative form maintains the mass flow rate

error within 1%, while the weak conservative form gives a maximum mass error of

about 30%. In fact, for all the cases computed to date with the strong conservative

form, including calculations for a nozzle with expansion ratio as high as 700, the

maximum mass flow rate errors have been maintained below 1%.

The reason for the failure in weak conservative formulation is because it does

not conserve the mass in its finite difference representation while the 'ully conser-

vative form does. Therefore, the results shown in Fig. 45 is to be expected. The

above results demonstrate that even for flows without discontinuities, the strong

conservative formulation is necessary for maintaining global conservation.
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CHAPTER 4

THE APPLICATION OF TIME-ITERATIVE SCHEMES TO

THE PARABOLIZED NAVIER-STOKES EQUATIONS

As indicated in Chapter 1, the parabolized Navier-Stokes equations have been

extensively used as an alternative to the Navier-Stokes equations for the solution

of compressible as well as incompressible viscous flows due to their computational

efficiency. To assess this efficient numerical procedure and place it in a unified

context with the present Navier-Stokes procedures, the parabolized technique is

also addressed here. In Chapter 3, time-iterative numerical procedures based upon

the predominant physics of the flow were formulated for the solution of thin-layer

Navier-Stokes equations. Starting from these time-iterative Navier-Stokes equa-

tions, it is shown in this chapter that the parabolized equations can be obtained as

a subset of the Navier-Stokes equations by means of flux splitting procedures. The

traditional pressure gradient splitting devised by Vigneron is showfh to be a specilic

type of flux vector splitting while the method of characteri3tics based splitting devel-

oped for the TLNS equations in Chapter 3 is also shown to split the streamwise flux

vector into parts with positive and negative eigenvalues which can also be treated

in a "parabolized" sense. This new PNS procedure is formulated by neglecting the

flux vector with negative eigenvalues. The computational results obtained by using

both the classical and the new PNS procedure are compared to those obtained with

the TLNS algorithms to verify the accuracy. The flux splitting interpretation of the

PNS procedure allows a well-behaved global iterative PNS procedure to be defined

based on the PNS-ADI method presented in Chapter 3.
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4.1 General Flux-Vector Splttin; Navier-Stokes Equations

The thin-layer Navier-Stokes equations as given in Eq. (3.11) will be used as a

starting point for the present approach. We first split the streamwise flux E into

two parts,

=E+ +E (4.1)

where the cigenvalues of the Jacobians of t+ and Ek are positive and negative,

respectively. With the substitution of Eq. (4.1) in,.o Eq. (3.11), we have

a + + a-+ a F= f.. a a R:, -!) (4.2)

Note that the splitting given by Eq. (4.1) is used conceptually to indicate a general

expression of flux-vector sDlitting, which might represent the Steger and Warming

splitting defined in Chapter 3, but which' could also represent any other splitting

procedures. As examples, we will in addition to the Steger-Warming splitting also

discuss a splitting based upon Vigneron's [261 parabolization method.

Although the approach is equally applicable to homogeneous or inhomogeneous

flux vectors, for simp. ity, we have restrict to the homogeneous case where E = AQ

with A E= ak/aQ. Flux-splitting of the homogeneous vector is then reduced to

splitting the matrix A as,

A = A+ + A-. .3)

Here the eigenvalues of A+ are positive and those of A- are negative. From the

homogeneity of the vector E, we have

E ~A+Q, E- --A-Q

which obviously satisfies Eq. (4.1).

In principle, both the streamwise and the cross-stream fluxes could be split.

Instead, we follow the traditional PNS approach, for which central differences are



119

generally used in the cross-stream direction while upwina differences are used in

the stream4i'te direction. Thus, just as we did for the TLNS equations in Chapter

3, we have split only the streamwise flux L.

Using Euler implicit differencing in time, the discretized version of Eq. (4.2)

can be expressed as

aA a - 7a 0 a aI7(t-tO~t[• ,+-A.- +-•-B-- -(R 1 •-•Bv+R 2 -Bv 2 )}lAQ =-AIR'

(4.4)

where R' liis been previously defined by Eq. (3.36). Again, the true Jacobians of

E÷ and t- are indicated by At' and A,', respectively and the spaiial derivatives in

Eq. (4.4) must be treated consistently on both the left side and the right hand side.

Note aiso that the derivatives containing At and At must be upwind differenced

in the manner defined previously. Efficient solution of Eq. (4.4) requires :me sort

of approximate factorization of the type discusbf.d in Chapter 3.

4.1.1 SDl~ttinz- Bised on Characteristics

As the first of our two specific flux splitting procedures, we begin with one

based on the method of characteristics. As we have scen in the previous discussion,

the matrix A ".n be diagonalized according to the similarity transformation given

by

A = A7 'AMf

where the subscript of A has been dropped for simplicity. The matrix Af, is com-

posed of the right eigenvectors of the matrix .4 .'nd has been previously defined.

The diagonal matrix 1, contains four eptries, U, U, U + C(, and U - C e. A straight-

forward splitting sugge.st.ud by Steger and Warming I1GJ is,

(A + IAII
2 (0. )

A- (A - AI)
2
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in which, IAI refers to the matrix composed of the absolute values of the elements

of A. From'Eq. (4.5) we readily obtain

A+ = M(A+M , A- = M(A-AI•, (4.6)

For the homogeneous case, the split flux vectors thus become

t+= A+Q, t-= A-Q.

According to Eq. (4.5), for supersonic flows, the matrix A- is identically zero, and

A+ is equal to A. For subsonic flows, these matrices are A+ = dtag(U,U,U + C(,O)

".nd A- = dtag(0, 0, 0, U - C().

4.1.2 Splitting Based on Presure Gradient

The second splitting under consideration is based on the suggestion by Vignercn

1261, who split the streamwise pressure gradient into two parts. His discussion of

Op/Olx can also be interpreted as a flux splitting procedure given by,

_ pU 1 0
Y PUU + Wý, u')GP (4.7)

( + p)U J [ ) 0 P]

This splitting recognizes that the streamwise ellipticity arises from the presst

di(k't term inside the subsonic portion of the boundary layer. Due to this press,.re

gradient, downstream information can propagate upstream. Thtus, Vigneron's tio-

tion was to separate the streamwise pressure gradient into parts, then, by choosing

the coefficient w properly, one can place those parts responqible for iup-ltresm ilfle,.

ence i.ito the fitx vector E-. The vector k+ therefore contains only those parts

governing the pi -pagation from upstream to downstream.

The eigenvalu-s of the Jacobian matrix of E+ in Eq. (4.7) re the four roots

of the following polynomial,

(A - U)2 {A2 - 1-y + 1 - ,(-y - 1)!UA + (-y + w-,w' wC)- } = 0. (.1.8)
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The eigenvalues of A- are the roots of

A3 A _-(1 _'_)(I -w)UI =0.

These roots are found to be

A' = diag(U, U, 1/2(1(y + 1) - w(-, - 1)JU ± 1(2W- 1)2 (w- 1)2 U2 + 4wC¢})

A- = dsag(0,oo,-(-y - 1)(1 - w)U)
(4.9)

In keeping with our purpose, all four eigenvalues of A+ = aEi/Qa must be

positive, and those eigenvalues of A- = at- /8Q must be negative. For supersonic

flows (U > Cf), if we set w equal to unity, then A+ bEcomes A+ = diag(U, U, U +

C(,U - C4) and A- is identically zero. All entries of A+ are positive, thus tlhe

splitting is completed by setting w = I for supersonic flows.

For subsonic flows (U < C(), the tigenvalues of A- are negative as long as

w < 1. On the other hand, the eigenvalues of At+ are positive if the three inequalities

U >0

[-y + I -(-j - l)JU > o (1.10)

('y + W - wY)U 2 
- wC2 > 0

are satisfied. The first inequality is straightforward while the second is °quivalent

to
"-+ 1

<w'I -p7-1

which is valid if w < 1. The third inequality in Eq. (4.10) results in

I< + (-y -- )A • t,,

where Mf is the streamwise Mach number defined by Al, = U/'C,.

In summary, pressure gradient splitting based on Vigeneron's approach gives

the proper signs for eigenvalues of both A, and A, when the following conditions

are met:
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1. The streamwise contravariant velocit,, is positive.

2. w is unity if the flow is supersonic.

3. w satisfies Eq. (4.11) if the flow is subsonic.

Three observations are noted here. First, the flux vector splitting in Eq. (4.7) is

analogous to traditional Vigneron-based PNS procedures. Second, the derivations

of the conditions for proper pressure gradient splitting given above differ from the

derivations given by previous investigators 13,261, in which the same splitting criteria

are obtained by considering the steady state TLNS equations in both the inviscid

and viscous limits of the corresponding simplified equations. By requiring these

simplified equations to be hyperbolic along the streamwise direction in the inviscid

limit, and to be parabolic in the viscous limit, they arrived at the same conclusions

given above. In the present approach, the unsteady TLNS equations are considered,

the splitting criteria are then obtained by taking Into account only the signs of

eigenvalues of the Jacobian matrix in the streamwise direction. Since the unsteady

version of the TLNS equations is hyperbolic in time, by forcing these eigenvalues

to be positive, we can easily complete the splitting without considering the TLNS

equations in the inviscid or the viscous limits separately. Third, in the formulation

of the pressure gradient splitting, the flux vectors E+ and t- are defined without

a prior specification of the matrices A+ and A-. In fact, the flux vectors t"+ and

tE - defined by Eq. (4.7) are not homogeneous; thus no explicit representation• of

A* and A- for the pressure gradient splitting exist (as that given in Eq. (4.13)).

However, if we neglect the variation of w with respect to Q, the relations

+. = A, = At

similar to Eq. (4.6) can be obtained, in which A+ 7- Ot+,,OQ and A- = 0-/DQ.

Just as in the diacussion of characteristics splitting procedure in Section 4-. 1. 1,

we have split the flux vector into positive and negative parts.
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4.2 Obtaining the PNS ProcedurR from tieNav~er-Stokes Algorithm

In the last section, we have formulated general flux vector splitting for the

TLNS equations. In the special case if the splitting is based on characteristics,

we have shown in Chapter 3 thiat the resulting TLNS equations can be efficiently

solved by approximate factorization procedures. The traditional Vigeneron's parab-

olization procedure has also been interpreted as a special case of the generalized

flux-vector splitting TLNS equations. Based on this interpretation, the Vigen-

eron's Parabolized procedure is equivalent to ignoring the reverse sweep in a specific

flux-vector splitting TLNS ?rocedure. This suggests that a general parabolization

method can be devised based on an arbitrary flux splitting.

This generalized parabolization procedure can be achieved by simply neglecting

the parts of the flux vector E contributing to upstream propagation. If the vector

i- is identically zero (as it is in supersonic flows) the algorithm given in Eq. (4.4)

describes an alternating procedure in one direction. For those cases where k"- is not

zero. ,.;e can likewise obtain a "marching" procedure by ignoring the contribution of

E-. In other words, the streamwise ellipticity is suppressed by ignoring the elliptic

parts of governing equations, thus the new approximate equations become parabolic

in the streamwise direction. Again, we note that we must maintain consistency on

both sidcs of Eq. (4.4), so we also drop the operator 9A,-/O, on the left-hand

side, With this approximation, the left hand side of Eq. (4.4) becomes a parabolic

operator,

{I-AtD+Altl-At + a BD a(1?1aB, + R2 a D, 2)I}Q =---AiR" (4.12)
0d Ty 0 1 ,7 T17

where the modified residual R" is also parabolized,

dE+ -9 F O

"" - (R I-- + R2 (..11)

- - - - - -t- t- c1 -) ?- I- d I
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Equation (4.1?1 defines a general parabolized procedure based upon any flux

splitting for which the eigenvalues of A" are positive. This implies that there are

an infinite number of ways to accomplish the Parabolized Navier-Stokes procedures

and Vigneron's pressure gradient method is only a special case of these parabolized

procedures. With this general form of parabolized procedures, the splitting based

upon characteristics seems to be more "natural" than the pressure gradient splitting

in the physical sense. These two special caues of general parabolized procedures are

considered in the next sections.

4.2.1 Pressure Gradient SDlitting

In the special case when E+ is given by Eq. (4.7), Eq. (4.12) becomes the

traditional PNS operator as given by numerous authors kfor ý-X mple, Refs.26-29)

except that the time derivative is included. These time-iterative PNS equations

are to be solved by iterations at each streamwise location. In other words, since

Eq. (4.12) is now a marching equation (this implies no upstrern influences exist),

it is clearly better to iterate to convergence in time at each line before advancing to

the next streamwise station. To define this time-iterative procedure more precisely,

Eq. (4.12) is rearranged as,

{J-LaD + (1 + -)A-A + At[-B - 2 "÷ "+ " =)

+ a_ - )

(4.1.1)

where K is 0 for first-order upwind differencing in the streamwise derivative and is I

for mecond order differericing. The superscripts * denote that these quantities are to

be evaluated based on the converged solutions. The value of AQ on the left-hand

side of Eq. (4.14) is driven to machine accuracy by time marching at one station,
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and then the procedure marches to the next t-station and so forth. As will be

demonstrated later, this iteration can be driven to machine accuracy in less than

10 iterations for two-dimensional problems.

4.2.2 Characteristics SplLtting

If the flux vector Ek in Eq. (4.14) is chosen as that given in Eq. (4.6), a

similar time-dependent PNS procedure can also be obtained. This marching pro-

cedure differs from the more traditional pressure gradient-split PNS procedure i:n

the parabolized approximation. As we have seen, the pressure gradient splitting

algorithm omits parts of the pressure gradient, while the characteristic splitting al-

gorithm neglects those parts with upstream-p-opagating acoustic wave. The latter

is more appropriately described by an appeal to the physics of the flow. The differ-

ences between these two algorithms are also indicated by the different eigenvalues

of the Jacobians of k+. As will be shown later, the calculations based on this PNS

procedure give results that are almost identical to or even slightly better than those

based on the pressure gradient splitting that is traditionally used.

4.2.3 Non-lterative PNS Procedure

The PNS algorithms discussed above include the temporal derivative, while

in the traditional PNS procedure, the solutions are obtained by a simple space

marching without iterations. To obtain this marching procedure, we first re-write

Eq. (4.12) without using the delta form. By cancelling terms on the lefl-hnnd

side with those on the right-hand side (given in Eq. (4.13)), the time-depeidoeit

algorithm becomes

{+ At(- + ,- - i) - at (Ra 1 3,, - + R 2 a3, 2 )Q} = '. (.1.15)

Note that for characteristic splitting, t + does not cancel with A'Q since, A+ t A+

if the flow is subsonic. Therefore, Eq. (4.15) is only approximately valid for the
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characteristic splitting algorithm, but this is not severe since in general the subsonic

layer is very thin. If we allow At to go to infinity, and use the chain rule,

a -+ at-+ a A, aQ. (4.16)

Equation (4.15) then becomes

_E a aFr - a a -A t T- + H + Y-(Ri B.,i + R2 B,.2) Q. (.7

We can now linearize each term in Eq. (4.17) according to the Taylor series expan-

sions,
F, 4  =F,+ BAQ

Hf,4  = +, + DA Q( 
(4.18)

where subscripts represent the ý direction grid number, B and D are Jacobians of

Sand Hý, and AQ is iow interpreted in a spatial rather than a temporal sense,

,' = -+,Q-,.

With the substitution of Eq. (4.18) into Eq. (4.17), we have,

(A+ - AýD+A~j-a B - a (R C)-B~1 + R2-2-B2 )}Q=
a, a a•, (1.19)

-A(1[F-H - aH(R- -H-Q- + R2 - ) 2

This equation now can be used to solve Q,+l without iterations at i + I station

provided that Q, is given. Equation (4.19) is referred to in the literature as a

space-marching PNS algorithm. The formulation above shows that any flux-vector

splitting defined by Eq. (4.1) can be used to obtain a distinct, non-iterative PNS

algorithm. In particular, the pressure gradient sp!itting noted above gives the tra-

ditional PNS procedure. Equation (4.17) also shows that the characteristic splitting

suggested by Steger and Warming can be used to formulate a parabolized algorithm

as well.
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4.2.4 Comparisons of Time-Iterative and S ace-Marching Algorithrns

In the discussion above, both the time-iterative and space-marching PNS pro-

cedures are formulated. By intuition, one might expect that the space-marching

algorithm is more efficient than the time-iterative algorithm because it does not

require local iterations at each f station. There are, however, other issues involved.

To demonstrate this, we compare the differences between two approaches. First, we

consider the difference in the final converged solutions of the two methods. From

Eq. (4.12), if AQ is driven to zero, the steady state solutions of the time-iterative

procedure can be obtained as,

-(A+Q) + - - V.T. = 0 (4.20)

where A+Q - t+ and V.T. is used to represent the viscous terms. On the other

hand, the solutions of the space-marching a~gorithm are,

A -+T- V.T.=O. (4.21)

The q derivatives and the viscous terms are exactly the same for both methods. The

difference lies in the ý derivative, in which the time-iterative method utilizes the

conservative form, while the space-marching method employs a non-conservative

form.

To explore this difference further, we compare the finite-difference representa-

tions of the C derivative in Eqs. (4.20) and (4.21). For clarity, wo, resirit to fii;I

order in ý. Upon discretization, the ý deriva~ive in Eq. (.4.20) becomes

(A+(•),+- (A+Q),

while the one in Eq. (4.21) is

A,
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Because the first row of the matrix A+ is related to the continuity equation, tile non-

conservatlvi form in Eq. (4.21) can be expected to give mass conservation errors.

For a grid which has no stretching in the f direction, these mass errors are not severe

since the metric coefficients are constants in the f direction. However, when grid

stretching is used in ý, the mass error can be expected to accumulate with f because

of the variation in the metrics. Numerical experiments using the non-iterative

(space-marching) scheme show that a global mass error of order one is observed for

even a moderately stretched gri 1. For highly stretched grids, this accumulation leads

to numerical instability. On the other hand, the time-iterative algorithm worked

well with either uniform or highly non-uniform grids. Consequently, the penalty

pAid for local iterations in the time-iterative algorithm can be at least partly offset

by using a stretched grid.

An alternative procedure for ensuring mass conservation with non-iterative

scheme on stretched grids has been proposed by Schiff and Steger 1431, although it

does not appear to have been widely used. In their approach, instead of directly

using the chain rule given by Eq. (4.16) to represent aE+/la in Eq. (4.17), the flux

vector i is linearized before discretizing. This procedure is obtained by noting that

the flux vectors at two consecutive locations can be linearized according to

k+~
t +I k,+_ + A,+_,& +I

++ A+ 1 Q -Q..) (.1.23)

By using Eq. (4.22) and Eq. (4.23), we have

at+ t+ I __,+ 1
j4.4- -A - A( Q -A" "--(A+ - A,._)Q,.

With the use of Eq. (2.24) in Eq. (4.17), the space-marching PNS algorithm gives

better mass conservation. Numerical experiments with this approach prove to be
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able to conserve mass within an error of 1% for a non-uniform grid in a moderate

expansion ratio (around 30) nozzle. However, for more realistic problems such as

flows through the 272 : 1 nozzle investigated in Chapter 3, the 75 axial grid lines had

to be increased to 300 to enable the modified space-marching algorithm to match

the conservative time-iterative method with 75 axial grid lines in accuracy. The

space-marching procedure without the Schiff-Steger modification led to global mass

errors of more tian 50% even with 300 axial grid lines.

The second difference to be addressed is the requirement of a safety factor,

0, in defining the parabolized operator. Parabolized Navier-Stokes calculations

reported in the literature (for example, Ref. 1291) traditionally use a safety factor

in Eq. (4.11). This results in

Uj<1 + (-Y - 1)M2

where the safety factor a is generally chosen as 0.85 or smaller. Numerical experi-

ments with the space-marching algorithm indicate that 6 can not be greater than

0.85 without numerical instability. On the other hand, with the use of the time-

iterative algorithm, & can always be set equal to unity. The results presented in the

next section also show that the solutions with a = 1 are more accurate than those

with a = 0.85 as compared to the Navier-Stokes solutions. From the derivation of

w given in Section 4.1.2, it is clear that there is no theoretical reason for requiring a

safety factor. The necessity of a safety factor in the space-marching method is only

to make the algorithm stable, and is not inherent with the parabolized equations.

As a final comparison, we note that the left hand side operator of the time-

iterative procedure is more diagonally dominant than that of the space-marching

algorithm. In fact, vanishing elements appear on the diagonal of the left hand

side matrix in the space-marching algorithm due to the absence of the identity

matrix I in Eq. (4.19). As a consequence, pivoting strategies are required to solve
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Eq. (4.19). Contrarily, the diagonal elements are always non-zero for the time-

iterative aliorithm, and pivoting is not required. Our experience shows that a 30%

saving in computational time per iteration is gained by the solution of a block tri-

diagonal matrix without pivoting. Again, this difference would help to make the

time-iterative PNS procedure more economically competitive with the non-iterative

procedure.

4.2.5 Stability Analysis of Time-_Iterative PNS Alstorithms

To validate the time-iterative algorithm developed above, the Fourier stability

analysis of Eq. (4.14) is given as follows. The amplification matrix of the variable

Q is defined ,

Qn+I =

From a von Neumann analysis, G can be found to be

LIG = I

where the matrix L, is,

t At At
L= I - AtD+ At + I-Bsinw, + 2At(RIB. + R2B, 2 )(I - cos ,)

and w,, is the q direction wavenumber. Figure 46 shows maximum eigenvalues of

the G matrix versus wavenumber for typical supersonic and subsonic conditions.

The results show that Eq. (4.14) is unconditionally stable, and that rapid conver-

gence can be expected for high values of CFL. The stability results given ahove

are for the pressure gradient splitting method. Those of characteristic splitting are

qualitatively the same.

4.2.6 Results and Discussion

We have discussed two parabolized procedures so far. Now, the question to ask

is which method is better in terms of both computational efficiency and solution
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accuracy? To answer this question, a series of numerical computations were done

and their solutions were compared to those from the TLNS algorithms provided

in Chapter 3. Before showing the results of these comparisons, we note here that

all PNS algorithms given above require boundary conditions in the cross-stream

direction. The procedures at the wall and the centerline discussed in Section 3.2.1

are equally applicable to PNS algorithms. At the starting plane, the flow variable

" must be given.

The test problem for the comparisons following is again the flow through the

high expansion ratio nozzle with an area ratio of 272 : 1. The same flow conditions

and properties described in Section 3.6 were used, including the inlet conditions, the

ratio of specific heats, and the 75 x 50 grid system (for the non-iterative algorithm,

a more refined 300 x 50 grid was used). The Reynolds number was taken to be

1.4 x 10' based on the throat radius for all calculations presented. All flowfield

results presented are for laminar calculations.

The numerical efficiency of the time-iterative PNS procedure is shown in Fig. 47

for representative conditions. This figure shows the convergence at a specific ý sta-

tion by plotting the L-2 norm of i(Q/Q associated with the four equations (con-

tinuity, momentum, and energy equations) as a function of the iteration number.

-Both inviscid and viscous results are shown on Fig. 47. A CFL number of 10' was

chosen for both cases. The convergence clearly indicates that machine accuracy

was reached in less than 10 iterations and the inviscid case converges slightly faster

than the viscous case. Acceptable convergence (corresponding to a reduction of

six order of magnitude in the L-2 norm) is obtained in 4 iterations. As we can see

from Eq. (4.14), when the time step At goes to infinity, the time-iterative algorithm

approaches Newton's method. Hence, the quadratic convergence shown in Fig. 47

is to be expected. This rapid convergence has been generally observed for all PNS
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calculations to date. The converg,,c. sho)wn in Fig. 47 is based upon pressure

gradient splitting, but is also representative for characteristic splitting algorithm.

The solu".ons of PNS algorithms are compared to those from thin-layer Navier-

Stokes calculations in Fig. 48. The upper plot s .r,v the Mach number contours

by using the pressure gradient splitting PNS method, the lower plot shows similar

results for the TLNS solutions. This comparison indicates that the PNS procedure

gives solutions that are almost identical to those of the TLNS equations. As will

be shown later, the characteristic splitting also gives results that are even closer to

the TLNS solutions.

To further compare the flowfield details, the pressure distribution and stream-

wise velocity C.rofiles at the exit plane are plotted in Fig. 49 and Fig. 50. Each figure

compares four different procedures. They are the TLNS rr,.:thod, the pressure gra-

dient splitting PNS with 0 = 1.0 and a = 0.85, and the characteristic splitting

PNS. The pressure profiles in Fig. 49 show that the computed pressure distribution

by pressure gradient splitting without safety factor is almost identical to that by

characteristic splitting, except the former slightly overshoots the pressure at the

centerline. Both methods agree very well with the TLNS results and th, charac-

teristics splitting method is slightly better than the pressure gradient PNS. Figure

49 also shows that the use of a safety factor of 0.85 in pressure gradient splitting

deteriorates the solution accuracy. As can be seen, the use of the safety factor

causes about a 25% undershoot in the pressure at the centerline and about. a 5V

overshoot at the wall.

Similar comparisons associated with the velocity profiles shown in Fig. 50 show

that all four procedures predict fairly close velocity distributions. Correct values of

velocity together with incorrect values of static pressure indicate that the entropy

(stagnation pressure) is not well conserved, a phenomenon frequently encountered

"-:i~~l"•'j" -j•-]-•'"F •I'-j' --]- --- j'- -'' -- F ] -"J J " • •j'g " -- [ •-• [ • ] - - j -"J -i • - " J "
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in numerical schemes.

The effect of setting a = 0.85 is also indicated in Fig. 51, which 1

number contours for this case. Comparison of this figure with the L . C,. _,!tions

given in Fig. 48 shows that the over-suppression of the streamwise pressure aradient

by using safety factor other than one alters the fiowfield structure dramati(ally.

Further comparisons are shown in Fig. 52 and Fig. 53, where the wall pressure

distributions and the locations of the sonic line along the axial direction are plotted.

Figure 52 shows that all four methods give almost identical wall pressure distribu-

tions but again the case with the safety factor included is not quite as accurate.

The sonic line locations shown in Fig. 53 are obtained by interpolation between grid

points. This figure shows that the three PNS algorithms give basically the same

subsonic layer thickness (the distance from the wall to the sonic point). Although,

the o = 0.85 case underpredicts the thickness of subsonic layer by about 1%, which

is the worst among the three algorithms. These results indicate that the PNS ap-

proximation gives solutions that are acceptable in accuracy for the high Reynolds

number flow without separation, as in current test problem.

The discussion above demonstrates that for better solution accuracy, t,,e safety

factor should not be less than one (which is easily done by using the time-iterative

algorithm). Furthermore, the characteristic splitting PNS procedure gives solutions

that are as accurate as, or even more accurate than (as in current test problem) the

traditional pressure gradient splitting PNS method.

So far, all results shown for supersonic viscous calculations including both froln

TLNS and PNS algorithms are obtained by using second order diflerencina, in thle

direction. To demonstrate the difference in accuracy between first order and second

order accurate upwind differencing in two dimensions, the first-order PNS results

of the same test problem (flows through the high expansion nozzle) are shown in
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Figure 51. Mach number contours computed by PNS algorithm based oil pressure
gradient splitting anid using a safety factor of 0.85
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Fig. 54. Comparisons of Fig. 48 and Fig. 54 show that the oblique shock wave froni

the first-order solutions is not as sharp as that from second-order solutions due to

the smearing effect resulting from the inherent second order artificial dissipation of

the first-order upwind differencing. Therefore, for better solution accuracy, second

order upwind differencing should always be used.

4.3 Global PNS Procedures

For flows with strong upstream influences such as separated flows, the marching

type PNS procedure as discussed in Section 4.2 can lead to serious errors in the

numerical solution due to the suppression of the streamwise ellipticity. To allow the

upstream propagation of acoustic wave inside the subsonic layer, thus preserving

the streamwise elliptic behavior, the cE-/-a term in Eq. (4.2) must be included;

thus the Navier-Stokes procedures discussed in Chapter 3 must be used instead of

the parabolized algorithms provided in this chapter.

In the traditional PNS approach, numerous attempts have been made to take

into account the upstream influences by identifying global pressure iterations. The

basic idea of global pressure iterations is to update the pressure field by providing

some sort of stable differencing scheme for the the omitted (1 - w)ap/OE term. This

is usually dorte by evaluating (1 - w)cp/c9 from a forward difference and using the

updated value of pressures at downstream locations, as suggested in the works of

Rakich 1441, and Lin and Rubin 1451. Davis and co-workers 1461 and Barf,,tt a,,Id

Davis 1471 also developed a global pressure iteration procedure by appe-nliltg a

fictitious unsteady term, dp/ar, on the steady state equation, then updalin I the

pressure field by a two-step alternating direction explicit (ADE) procedure. These

global pressure iterations are summarized by Thompson and Anderson 1,181.

In the present study, by obtaining the PNS procedure from the TLNS equa-

tions, the procedure for incorporating a global pressure iteration procedure becomes
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Figure 54. Mach number contours computed by PNS algorithm based on pressure

gradient splitting, first-order upwind results.
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obvious. We need only return to the complete TLNS equations (Eq. (4.2)). There-

fore, all three approximate factorization algorithms provided in Chapter 3 can he

interpreted as global pressure iteration procedures.

The TLNS algorithms (or so-called global pressure iteration procedures in the

traditional PNS approach) developed in this study are based upon the approximate

factorization of the TLNS equations, and therefore have both physical and mathe-

inatical connections to the equations of motions, while the global pressure iteration

algorithms are concerned wit, arbitrary iterative processes for the pressure gradi-

ent (1 - w)a)p/al, which are unrelated to the physical equations, as a consequence,

some sort of relaxation scheme is required. This suggests that the mathematically

and physically well-behaved TLNS algorithms based on approximate factorization

can be used instead of global pressure iteration procedures.

As an example of the interpretation of global pressure iterations based on TLNS

algorithms, the following procedure is suggested:

1. Obtain an initial PNS solution by marching from upstream to downstream

using Eq. (4.4).

2. Solve the discretized equation of the PNS-AD! algorithm, Eq. (3.40), by the

following two equations,

{IAt+ ~a~ + CB I a a .(I - AtD + At[ A+ + -(R, -- Bv1 + R2 •-Bv2 )I}AQ = -AIR'

(I - AiD + At aA)A = (I - AtD)AQ (.1.2G)

3. Update the dependent variable Q, according to,

nf+ I = Qf + A

until the converged steady state is reached.
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The first step is used to obtain a good initial condition for the TLNS calculations.

The first equation in the second step, Eq. (4.25), is equivalent to the time-iterative

PNS algorithm and the second equation, Eq. (4.26), is augmented in order to provide

a mechanism to allow upstream propagation to take place inside the subsonic layer.

In the supersonic region, A- is identically zero and the left hand side operator in

Eq. (4.26) reduces to an identity matrix; hence, only Eq. (4.25) has to be solved.

Figure 55 shows typical convergence of the TLNS procedure mentioned above

when applied to the high-expansion ratio nozzle calculation given in Section 4.2.6.

It requires only 110 iterations to reach machine accuracy; acceptable convergence

is achieved in 25 iterations.
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CHAPTER 6

THE APPLICATION OF TIME-ITERATIVE SCHEMES TO

VISCOUS SWIRLING NOZZLE FLOWS

As examples of the application of the N1" ier-Stokes algorithms, swir'ing vis-

cous flows in transonic and supersonic propulsion nozzles are investigated in this

chaPver. The central-differenced ADI and the flux., ector splitting algorithms dis-

.usmed in Chapter 3 are utilized to solve the thin-layer Navier-Stokes equations for

axisymmetric two-dimensional flows wit' swirl. The effects of swirl on viscous flows

are identified for nozzles with mild to h'Zh expansion ratios. Both flowfield details

and the ittegral nozzle performance are compared to previously publ sued inviscid

calculations.

5.1 Governlng Eguations andNumerical Alorlthms

The swirling nozzle flow inside an axisymmetric nozzle can be described by the

three-dimensional Navier-Stokes equations. If we assume the flow is axisymmetric.

all circumferential derivatives vanish and the system of equations reduces to two

dimensions. The resulting Navier-Stokes equations in vector form can be written as

OQ OE OF aE, aF,
+ + T --= H+ -- - (F. 1)"at a 'x +"y=Y +9 " a" y

where x and y are the axial and radial coordinates, respectively. The flow variable

Q in Eq. (5.1) is defined as

Q =! y(p, pu,pv,pw, e)'j"
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in which u, v, and w represent axial, radial, and circumferential velocity compo-

nents. Th.N inviecid flux vectors E and F are given by

Pu PV 1"[u+ 1  Pt'
OU2 + p Pur

E = py | F=Y PVy +p
Put', pvw

(e + p)u L (e + p)v J
Vicois terms are included in flux vectors E. and Fv,

0

+ ~) +Isu - all u~ k

Lsu(Y ft Ism, )
O + O) ±u( 21 + 14~w~ Af

AV,+t( (3 0, 3, a,+,, as,, x

0
A,(P + •

The source vector H is defined by

-AIf(s ) 4

( 8 ) ,A(!Ou 2. Ou w 'r

H A = + w ,1J + Aw - +k
~ v2 -

-PW- A I "L (Auv- jv 2A w L _ W 2

The system of equations, Eq. (5.1), is similar to the Navier-Stokes equations in

axisymmetric two dimensions (Eq. (3.2)) except the tangential momentum equatiofi

is included in Eq. (5.1) to take into account the variation or the circrt,rnfre,;l~il

velocity in axial and radial directions.

Following similar procedures given in Section 3.1, the thin-layes ver,'jn of

Eq. (5.1) in general coordinate system for two-dimensional swirling flows can be

written as

a,?aQ a' aE , c9r f + a r (5.2)
a-t 5÷ '-- 5 -7 a?7
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where the flow variable and the flux vectors are

S= 1(p, pu,pv,pw, e)T,

puU + 1.p pUV + 17p

EpU + pU ,p PvV + F {PP/ pwU pWV

L (e+p)U J(e+p)V

and

0
a+ aB 

1
a2! + I!

aw

In which a, through a4 follow the same definitions described in Chapter 3 and ac

is
2 2 .a6 = (TIZ + ?7)

The source vector H for swirling flows is simply H = H/IJ. Again, if p is set equal

to zero and a[,/8aq is omitted, Eq. (5.2) reduces to the Euler equations which

describe inviscid swirling flows.

Equation (5.2) takes the same form as Eq. (3.9) except for the additional en-

tries arising from the tangential momentum equation. Therefore, all numerical

algorithms discussed in Chapter 3 and Chapter 4 are presumably applicable for

the present governing equations. According to the nature of the flow, different iiu-

merical algorithms will be employed to solve transonic and supersonic flows. For

transonic flows, we choose the implicit ADI procedure instead of MacCormack's

explicit algorithm which was used by previous workers 132-341. The details of this

implicit ADI "scheme have been discussed in Section 3.2 and will not be repeated

here.
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As mentioned earlier, the implicit ADI procedure becomes inefficient and some-

times even leads to numerical instability if a large portion of the flowfield is super-

sonic For this viscous supersonic swirling flow, the hybrid upwind-central differ-

encing algorithms described in Section 3.4 can be chosen. For swirling flows where

upstream influence is not significant, the parabolized procedures discussed in Chap-

ter 4 are also applicable. The major difference In numerical procedures between the

present swirling flow solvers and the non-swirling axisymmetric solvers discussed in

Chapter 3 is that the block size of the left hand side matrix for the present case is

5 x 5 while that for the non-swirling case is 4 x 4. Therefore, numerical procedures

for the swirling flows are more time-consuming than those for the non-swirling cases.

5.2 Boundary Conditions

Previously defined boundary procedures can be easily extended to swirling flow

calculations. For supersonic flows in the meridian plane at the inlet, the flow variable

Q is completely specified. For subsonic inflows at the inlet, the stagnation tempera-

ture, the stagnation pressure, the meridian plane streamline angle tP = tan-, (v/u),

and the swirl angle 4' = tan-'(w/u) are specified, the remaining one unknown

comes from the characteristic equation corresponding to the single negative eigen-

value. The swirl angle profile at the inlet is assumed to be one of constant angle,

free vortex, or forced vortex, which are the same as in Ref. 1341 except that the swirl

angle asymptotically approaches zero at the wall for all viscous caiculations.

At the wall, four characteristic equations and the tangency condition are ,.m-

posed for inviscid calculations, while no-slip conditions together with zero normal

pressure gradient and isothermal or adiabatic wall conditions are used. Symmet-

rical conditions are applied at the centerline. At the exit, either extrapolation or

fixed back pressure conditions can be chosen as described in Chapter 3.
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To give assessments of the nozzle performance, several integral parameters are

defined as tlhe following. These include the discharge coefficient CD, the vacuum

stream thrust efficiency 17,., the specific impulse efficiency ",sj, and the nozzle

flowfield as a function of the inlet swirl number S,,
= rh Vu.CD • - = 2 puydy/(y't- v•lp•',

17, 2 (p + pu')ydy/(•. - )(+ PeC).
'7','17we

?7 S l = -D

Si f puwY'd y /y, 1  pu 2 dy.

The subscripts i, t, e, C, w, and id denote inlet, throat, exit, centerline or centerbody,

wall, and ideal conditions, respectively. The quantity ii is the mass flow rate. The

ideal conditions are obtained from one-dimensional isentropic values at the same

stagnation conditions as the actual flow. The discharge coefficient can be interpreted

as a measure of the loss in mass flow rate due to two-dimensionality and the swirl.

The swirl number is defined as the ratio of the axial flux of flow angular momentum

divided by the axial flux of axial momentum and is a direct measure of the level of

swirl at the nozzle inlet.

5.3 Nozzle Flowfleld Predictions

To place present viscous swirling calculations in perspective with previously

published inviscid results, the implicit ADI scheme is applied to calculate transonic

flows through a convergent-divergent nozzle, an annular plug nozzle and a convrrg-

ing nozzle, which all have been investigated by Dutton 1341. As an example of

predominantly supersonic flowfield, the viscous swirling flow through the 272 : I

contoured nozzle previously given is calculated by using the upwind-central differ-

encing algorithms. Only laminar results are shown for all three transonic case,. and

both laminar and turbulent results are presented for the contoured nozzle.
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5.3.1 Converfent-Diver&ent Nozzle

The 350 - 18.50 convergent-diverging nozzle calculated by Dutton is analyzed

in the first series of computations. The geometry of this nozzle is shown ill Fig. 56

and Fig. 57 for Inviscid and viscous computations, respectively. The 63 x 30 equally

spaced grid in both the axial and radial directions as shown in Fig. 56 is for inviscid

calculations, while the 63 x 50 grid with strong clustering near the wall as shown

in Fig. 57 is for viscous calculations.

The convergence rates of inviscid and viscous cases are shown in Fig. 58 and

Fig. 59, respectively. For inviscid computations, as shown in Fig. 58, the L-2 norm

of A(Q/Q reduces 9 orders of magnitude in 250 iterations for the zero-swirl case,

which is typical for a ADI scheme. Also, the presence of swirl is seen to slow down

the convergence rate substantially. The convergence rate for the viscous calculation

is dominated by the boundary layer near the wall, hence it. is in general slower than

that of inviscid calculations as is seen in Fig. 59 (for 300 iterations, the L-2 norm

drops only four orders of magnitude). These results show that the convergence for

viscous calculations is insensitive to swirl.

Calculations of the flow in the converging-divergent nozzle have been completed

for a number of nozzle Reynolds number conditions including the inviscid case. Fig-

ures 60 and 61 compare Mach number contours for the no-swirl and the swirl cases

for the inviscid and one of the low Reynolds number viscous calculations, respec-

tively. The inviscid results are in good agreement with Dutton's calculations. The

viscous case is for a Reynolds number of 7000 based on the inlet radius afid iuiflnw

properties. These viscous Mach number contours indicate that the introduction of

swirl primarily affects the axial velocity near the centerline as in the inviscid case,

although there are some changes beginning to occur near the wall in the diverging

section.



Figure 56. Inviscid grid for 350-18.5) convergent-divergent nozzle
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Figure 57.. Viscous grid for 350-18.50 convergent-divergent nozzle
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The integral nozzle performance in the presence of viscosity is plotted in Fig. 62

against the'swirl number. This figure shows the discharge coefficient (CD) and the

vacuum stream thrust efficiency 4 (r7,.) as a function of swirl numbers for free

vortex, forced vortex, and constant angle inlet swirl profiles. The predicted CD and

Yi,,, values are about 2% less than those of inviscid calculations of Dutton at the

Reynolds number of 7000. At a given swirl number, the reduction in CD and 14, is

most promin'ent for the free vortex case because a relatively larger swirl .igle must

be specified near the centerline in order to achieve the same swirl number. This

larger swirl angle sresults in a larger reduction in the mass flow rate. A similar

phenomenon was also observed in Dutton's inviscid calculations 1341. The specific

impulse efficiency (rnsi) for the viscous case is essentially constant and is similar to

Dutton's inviscid results, except the value is 0.965 instead of 0.971.

The effects of Reynolds numbers are shown in Fig. 63. The computed Cp and

Y7,, values as functions of the Reynolds number are plotted for S, = 0 and S, =

0.361. A constant angle swirl profile was used for these computations. Asymptotic

values obtained from present inviscid calculations and from Dutton's calculations

are given on the right. As the Reynolds number increases, CD and Y7, approach

the values of inviscid calculations. These results show the degree of error incurred

by making the inviscid assumption for high Reynolds number flows.

5.3.2 Convergent Nozzle and PlugNozzle

Viscous calculations ar- proceeded with the elliptically contoured conlverginig

nozzle and the annular plug nozzle. A small portion of the wall has been appended

to the converging nozzle after the throat, such that the flow at the downstream

boundary is predominantly supersonic in the streamwise direction. This allows

easier implementation of the downstream boundary conditions and does not alter

the flowfield before the throat. The resulting Mach number contours are showni in
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Fig. (4 for S, = 0 and S, = 0.43. Corresponding performance curves are plotted in

Fig. 65. THe predicted CD and 17,. values are about 1% less than those of Dutton's

inviscid calculations over the entire range of inlet swirl numbers for a Reynolds

number of 1.1 x I0 4 . The values of rls are about 0.7% less than those of inviscid

results.

The results of the annular nozzle are shown in Fig. 66 for viscous calculations

for a Reynolds number of I0". The flowfield of the high swirl case S, = 1.706 is very

different from that of the zero swirl case near the inlet region due to the combined

effect of boundary layer and the inlet Eiwirling. The total Mach number contours

for this high!y swirled viscous flow differ from Dutton's inviscid results due to the

viscous effect #,n the circumferential velocity. This d.screpancy demonstrates the

importince cf v scous anzJlyis for low Reynolds number flows. About 4% of the

-eduction in Ca and Ylt,a compared to the inviscid case can be observed in Fig. 67.

Again, the redu.Atior, in specifc impulse efficienc) tor viscous calculations is :ess

than that for the inviscid results.

5.3.3 Hig.h pQMjjsion Noyzle

Af indicates earlier, the effect of viscosity on high expansion ratio nozzles with

swirl are considerably greater 1.'an tnat on C-D nozzles. Supersonic flows through

a contoured nozzle ,ith an expansion ratio of 272 : I as that given ini Chaptei 3

were computed by using the PNS-AD! algorithm (Eq. (3.40)). A 75 x 50 -rid as

shown in Fig. 30 %as used and the Reynolds number based on inlet (throal) radius

and inflow cvne.itionq was 1.4 K I05 for both laminar and turbulent ca'cul,-.tion,,.

The convergence rates for zero-swirl and typical swirling case are shown in Fig. 6J.

The results show that -wirling has minor effects on the convergencce rat.. for the

l'NS-ADI algorithm.



163

o-

Si = .4

0.2

.4~.4

Figure 64. Viscous Mach number contours for convergent nozzle
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The Mach number contours from laminar results for S, = 0 and S, = 0.521

are shown In Fig. 69. The presence of swirl increases the axial velocity near the

centerline and thus results in a shifting of iso-Mach lines and the weak oblique

shock. The resulting boundary layers are thicker in these calculations than those

in C-D nozzles even for a Reynolds number as high as 1.4 x 10s. A much thicker

boundary layer can be expected for lower Reynolds number flows where inviscid

assumptions appear to be inadequate.

Turbulent results by using Baldwin and Lomax model 1121 are shown in Fig. 70

based on the same Reynolds number and two inlet swirl numbers of 0 and 0.55.

Comparing with Fig. 69, relatively thicker boundary layer is seen. Figure 71 plots

CD and 17,,, as functions of S, for both laminar and turbulent results. Large reduc-

tion in CD and rY7 for both laminar and turbulent results can be observed. For a

highly swirled flow (S, = 2.5), CD and q., are about 20% less than those of the

zero-swirl flow, even for a moderate swirl, a 10% reduction in CD and rio,, may

occur. Slightly less reduction in CD and %,1 for turbulent results are noted. These

results demonstrate the effects of swirl on high expansion ratio nozzles are much

more prominent than those on mild C-D nozzles.

G.3,4 Verification of Global Conservation

To validate the numerical algorithms, the mass flow rate aL each axial location

is calculated in the analysis codes. This provides a back-to-back check for global

mass conservation. For the transonic result.s presented above, the maximlmn rnn.q

error has been maintained below 1%. For the more difficult high expansion nozzle

case, which has the largest mass error to date, the maximum deviation is about

0.8%. This again verifies the necessity of fully conservative form for the internal

flow calculations.
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nozzle for S, =0 and S. = .551



171

.00
- Laminar

0 . 9 5 " -'" " " . T r u b u le n t

0.901 S- a,• CD
•CDS.'-

0.85

17',.' ' 4 1
0.80 *

0. - i 7i5 , , I I r I I I I ' 0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Swirl number (S,)

Figure 71. Integral performance for supersonic flow through contoured nozzle



CHAPTER 6

THREE-DIMENSIONAL NOZZLE FLOWS

The hybrid upwind-central algorithms proposed in Chapter 2 are extended

to three-dimensional viscous supersonic calculations in this chapter. The three-

dimensional thin-layer Navier-Stokes equations are simplified by neglecting the

streamwise diffusion while retaining all viscous terms on the cross-stream plane.

Both the Parabolized Navier-Stokes procedure and the time-iterative TLNS algo-

rithm are studied for three-dimensional nozzle flowfield predictions. These algo-

rithms are formulated based on the DDADI splitting for the streamwise derivative

and central differencing in cross-plane derivatives. Supersonic flows through a three-

dimensional nozzle with a rectangular cross section are computed for demonstration.

6.1 Governing Eauations

The three-dimensional Navier-Stokes equations in a Cartesian coordinate sys-

tem can be written in vector notation as

aQ aE aF 8G a E, aF, OGVS+ T + T + - = -5--+ -- ÷ +-; •l

where the dependent variable Q is

Q = (p, pu,pv,pw,e)T .
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The inviscid flux vectors E, F, and G are

1 r pv 1
pu 2 + p puv

E= puv , F= pv 2 +p ,
puw puw

Je + p)u (e + p)v

pw
puw

G pvw I
pw2 + p(e + p)w.j

Viscous terms are included in the flux vectors E., Fv, and G,, as

• - '\ + •;

- + 8w)

0
EVa 8(V + k

+ 2-+ -)
2w 24tw +_js a

.u(•.•zv+ ••)+ u~u4 av 2/V + 1-U) + , /,.,, ,•T

0

! +a
z= (+ + 8)(!- + ý-u) + Av)+Lw +'[ a, w 2- + L-)I + k L

To facilitate computations on arbitrary grids, the Cartesian coordinates x, a,

0I
and z are transformed to general coordinates •, t/, and f according to

,•= ,i(x,y,.z) (6.2)

S= (&, +,z)

By using the transformation defined by Eq. (6.2), Eq. (6.1) can be transformed to

a¢ at, at a6 as a. a63- A+ as - a ay

v-i~~~~ ... +'--~ ..... i) +... p- v... ( ....... 4-- L- ) + IA w 1i !L- - ,- + 22 +'
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The dependent variable now becomes Q, which is defined by

Q (ppu,,p , ,) T

where J is the Jacobian of the coordinate transformation and can be expressed as

J- = Z"On1z + XC(Z + X -yz ZQ/rZu, - XYz - ZY"PZ(.

The inviscid flux vectors now become
pDU+&=p] 1 |puV+rtfP|

pU PV

E=- y pvU+p , F - pvV| V + 7p |,
pwU + Cp pwV + i70
(e + p)U L (e+p)V j

1 puW + ýzP

[PWW + wpj
L (e+p)W

in which the contravariant velocities U, V, and W in three dimensions are

U = Gu + Gv + Gw

-= 1,u + 1,V + 17w

S= ýZu ±+ v + ýZw.

The transformed viscous flux vectors are defined by

(C.E + AyF~, -r .v,

.F',, = (rE,, + f,1,F,, + ,l.C,,)/J

C,, (cxE. -t cyF, + ,c.G.)IJ.

As mentioned in Chapter 3, the streamwise diffusion can be neglected without

losing accuracy even for a fairly low Reynolds number. For three-dimensional flows

inside a nozzle, the viscous terms in ?7 and C directions cannot be neglected. This

results in the TLNS equations in three dimensions as

aQ aE aF aG a oF a],,
- + T + -- + 4!- _ o (6-4)
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The viscous terms on the right hand side can be further rearranged to

• o, a& _ afr, afr, a&,, a6,ao-T+ a-7-= a-- +-a-, +-a•- + o-T

where F, and 6, contain pure second order derivatives with respect to 17 arid ,

respectively. All cross derivatives are included in Pý and dn. The viscous flux

vector Fn can be expressed as

0
u8u 8wa1 I-:j + k2 ' + C3

Fn-'-8u 8 +Ou 8wa2 2- + aau+asw
Fn Of 03 2- + 0x, 5 on C3L-

8u8uan2 a n nc~c~

8UV Ouw +asa.+a2-- +a3 a3 + a

with
k (n.. + -I.)i) 41,72 +(7t2 + n.),y72 =

= P -4- 177) -4- nan,

Cco = P-(,77 2 + 17 2 4 25 )"

The vector 65 can be obtained by replacing all ?'s in the expression or Fn with s.

The vectors /ý and C, are

0

8u 8t' 8w

I- + 1 1
+ 2 0€ 2 8• 2 a¢

+ 'Y4 8w 8+

8+ av
+ -1 A v•- + -loew s-•

and 0

"I I "a-U + 14 !23-V + IT 2 -L"
8rIau v alt

= 3 +P7 7 +q J o7

"1 , 12 1- + 4-r !2-1 + n +1 2 -3-a 87 av a7 3

+ -F + -+ - __-_-Q + c) w
n2 8a 2 LI, ? d,

.-U 'I +'1t' + " d7U +
4- 'CU2-j



176

with

"•0co,"vkn o( + +l•o + +XM)

*72 ~ ~ ~ ~ 0 17.My) 13= (~ 2

14 5'z~v - 37 =C) S (7xC 4- '171y~ + 14M

*7 - 'Aiai' - a y

*76- ~17zi,), 19 (1 Az z + IWY~j + IM-a)

With the substitution of the new expressions of Viscous terms, Eq. (6.4) be-

comes

at at ak, ad ak, a+ a,, a+ (6.5)at +- + + 77 =a-• + 17 a -17 + a-T

0.2 Three-Dimensional S.upersonic Algorithms

Numerical algorithms for the solution of Eq. (6.5) can be formulated in a num-

ber of ways. Based upon the results from Chapter 3, the algorithm for three-

dimensional flows will be formulated according to flux-vector splitting in the stream-

wise direction and central-difTerencing in cross-stream directions. Before discussing

the details of numerical algorithms for the vector governing equations, the Fourier

stability analysis for a scalar modeled equation is studied.

0.2.1 Stability Analysis of the Scalar Equation

The three-dimensional Burger's equation,

au +au ..-au au a3u a2u,• a2U
+ +a -+a--+b-+c dy dz a2 .z

is chosen as the modeled equation. This modeled equation implies only the stream-

wise (x) direction is flux-vector split, while the remaining derivatives on the cross

plane (y and z directions) are to be evaluated according to central differences.

For simplicity, we restrict only to first-order upwind differencing for the dis-

cussion of stability analysis although the numerical computations shown later are
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based on second-order upwind differencing. By using the line Gauss-Seidel version

for the DDADI method, the discretized equation for Eq. (6.6) can be expressed as

a forward marching,

Id+ At(b+ - ) + At(c -(82 =-Atrn (6.7)

and a backward marching,

Id + At(b- -) (e g 2)-8-'2 )jAu = -Atr*. (6.8)

In Eqs. (6.7) and (6.8), the right hand side residuals r' and r" are

=+,jk_- ,_ ,,k a9u au au a 2 u Ua + [a,- +ba- + C_ - 2- +a:)•

and

" n+I •[9 au Rau au .aUu au

7* a- A[+T - +c5- -,.4(5- + -WI.aX I dy OZ 8Y CI

and the quantity d is the diagonal element defined by

Atd = 1 + -(a+ - a)
AX

Equations (6.7) and (6.8) are based on a straightforward extension of the two-

dimensional algorithm. This implies that the y and z derivatives (from both inviscid

and viscous terms) are treated implicitly. Consequently, the resulting lf4 hnnd .side

matrices of Eqs. (6.7) and (6.8) are very expansive to solve due to their high handl-

width structure.

A more practical way to solve these two equations is to factorize the left hand

side operators of Eqs. (6.7) and (6.8). This results in the factored forward marching,

Id + At(b -a a,- )d-'[d + At(c•4-9 - .9 )]AU" =- -str" (6.9)
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and the factored backward marching,

(d + At(b±- 82-)Id- (d + At(ca - I ) --2-Atr'. (6.10)

The solutions of these factored equations require alternating sweeps in y and

z directions, each sweep involves only consecutive solutions of a scalar tri-diagonal

matrix for the present scalar modeled equation. In the vector governing equations or

interest, the factored algorithm requires the solutions of a block tri-diagonal matrix

with a block size of 5 x 5.

The amplification factor for the unfactored forward marching Eq. (6.7) is then

where, DZ and Cu are

D, = .- o(cosw,, + isinw,)

and
Cu =1 + a'+(1 - cosw, + isin w,) - oa + ioaysinwy + ito sinw,

+ 2v,(1 - cosw.) + 2v,,(1 - co'w,).

and that for the unfactored backward marching Eq. (6.8) is

U1+1 D "u "- -U
U. cu.

where

-D,"= 1 + c+(cosw, + isinw,)

and
C.* I1 + a + a[ (cos w. + isinuj,, - 1) + iacysinw, t to, sinw,

+ 2vy (I - cosw.) + 21,(1 - cosw,).
The parameters ~ o+ , a1, and a, are CFL numbers defined by

a+At a-Ata:- ,x ,, -
bAX At

bAt cat
CTy - - t•, z-

Ay AZ
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and v. and &'. are von Neumann numbers defined by

MAt .AtA
VV -- i az i --

The wavenumbers in x, y, and z directions are represented by w., w.,, and w,,

respectively. The overall amplification factor for the unfactored method is then

g" = g',gU,'.

The amplification factors for the factored forward and backward marching are

g; D: + Cf
-=c'e + c z

and
g Du*" + Cfg7"

Cq + C 1 '

respectively. The quantity C1 is due to the approximate factorization and is

C! + (+ --o)[Iovsinwv + 2vy(1 - coswv)J[io, sinw, + 2v,(l - cosw,)I.

Th'o overall amplification factor for the factored method is gf = g"g;".

Similar to the discussion in Section 3.3.5, the stability results are presented for

two special cases, they are

1. subsonic :o,+ = -a.- = = = r, Y = LI, = CFL

2. supersonic:o+ = ov = a, - IY = LS v,= CFL. 0; = 0.

Here, the first case simulates the subsonic flow, while the second case is analogous

to the sitersonic flow.

The results for the first case with a CFL number of 10 are shown ii Fig. 72

and Fig. 73 for the unfactored and factored schemes, respectively. These two figiores

plot the amplification factors versus the wavenumber w. and w, for three typical

x-direction wavenumbers, w,, = 0, w, = 7r/2, and w. = ir. As can be seen, the

approximate factorization of the factored scheme results in a much higher ampli-

fication factor near the high wavenumber region as compared to the unfactored

, I I I I I I I IM
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Figure 72. Stability results of 3-D Burger's equation based on unfactored scheme
for subsonic case
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cue. Therefore, the factored scheme is expected to give much slower convergence

than the dnfactored scheme. The stability results for the second case are shown in

Fig. 74 and Fig. 75. Similar effects of approximate factorization as in the first case

are clearly shown.

The results above indicate that both the factor and unfactored three-

dimensional DDADI schemes are unconditionally stable for the three.dimensional

Burger's equation. Furthermore, the necessary approximate factorization for a prac-

tical three-dimensional DDADI algorithm results in increasing the eigenvalues near

the high wavenumber region. This implies that convergence of the three-dimensional

DDADI algorithm is inferior to that of the two-dimensional DDADI algorithm given

in Section 3.4. In fact, due to similar approximate factorization required, we ex-

pect this three-dimensional algorithm will give similar convergence as that of the

two-dimensiona! central-differenced ADI scheme.

0.2.2 Numerical Algorithms of th- TLNS Eouation

Similar to the formulations of the DDADI algorithm in axisymmetric two di-

mensional flows, we first split the streamwise flux vector E according to

This splitting can be done by using either the characteristic splitting,

or the pressure gradient splitting,

F PU 10
I puU + W p E ( u1 -W) pPWU + |WP =-W)GP

(e + p)U 0
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Figure 74. Stability results of 3-D Burger's equation based on unfactored scheme

for supersonic case
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The matrices Mf and M,-1 are the right and the left eigenmatrices of the Jacobian

matrix A ! OE/,Q, and the diagonal matrices and A, are

^+=AC +2 jAl I A ,, - I'- AýI
-A+ + = ~ A

f 2 ' A- 2

where A( = dtag(U,U,U,U + C(,U - Cd) with Cf = ý/ý2 + + 2c. The pa-

rameter w of the pressure gradient splitting in three dimensions is equal to unity if

U > Ci and must satisfy

I + (-I-1)M2

if U < Cf, where M( is the streamwise Mach number (M4 = U/Ce).

The flux vectors E±, P, and Cý in Eq. (6.5) can be linearized by the truncated

local Taylor series,

(1ý±)-+l (fl)- + A:,'%

=~ +I P + BAQý

n7+1 dn +~ +

in which, A±, B, and C are Jacobian matrices of E-., F, and G_, respectively.

Viscous terms containing pure second order derivatives can be linearizEd accord'ing

to

fl t - (-Fll-)n + a(B

all 9 tj•

(D)f+l a6ý -(CVAQ)
(9(+( O

where the viscous Jacobians b, and r.' can be expressed in a similar way an in

Eq. (3.10) For example, B, is

R aQ 2 a Q.,
a. i , a-Q . 7 oQ
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where the matrices R, and R2 are

S0 0 0 0 0 ]
0 l 01 2 a•30

Ri 0 Q2 a4 S 0•

CO3 0 0 0 OIs0 0 0 0 00
0 0 0 0 0

R2 0 0 0 0 0
0 0 0 0o

2 2 2

and the vectors I• and Q2 are

Q1 (tsv,U,v,,w,vw) Tr, ý= (e/p,U2 ,v 2 W 2 ,u V)1 '

The matrix C., can be obtained by replacing all a's with O3's in the expressions of

R, and R2 above. The cros3-derivative viscous flux vectors in Eq. (6.5) will not be

linearized because the linearization of these vectors will results in a high band-width

left hand side matrix.

Direct application of the DDADI splitting to the ý derivative of Eq. (6.5) results

in the unfactored forward marching

StaB_ a a a
D+ At(-aB + -C - a -B - a ,CV)"AQ .tn (6.11)

and the unfactored backward marching

ID' At( B + C - -- B, - C•)JAQ -Ati" (6.,)

where the residuals R' and 3" are
"04 (E._,-~ , ~ .) 2(E,_j• +(,2,.)

(E- 1,;,k) (E~,) I )k) +k),12,kR + ( _'"'a) - -" +' - +G, " "+
• d2.

+9 (3-- 1' a 0(; af', aiý- a•. aG, i
ac or<)l oy0i j c• a
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and

" ' )+, - 2(E -i.- ,,, +) +
A• 2Aý

. + at" a6 aA, ai• a&,, ac•
+ I-aE+ + aF + aG aFn aFý a•n aG

The diagonal matrix D' is

D' = I + (1 + K/2)--t'A+ - A-)

where the quantity K is 0 for First order and is i for second order upwind differencing

in ý.

To avoid the solution of a high band-width matrix, the left hand side operators

of Eq. (6.11) and Eq. (6.12) must be further factorized into two one-dimensional

operators. This results in the factored forward marching,

a - 2 B.)I(D')-'[D' + At(-C - -C,)lAQ -- iR" (6.13)

and the factored backward marching,

(D' + At( --'B - a B,)J(D')-'[D' + At( -C - C,,)JAQ = -AtR". (6.14)

Note that the corresponding Parabolized Navier-Stokes procedure can be oh.

tained by neglecting the flux vector E- and its Jacobian A- in Eq. (6.13). Either

the traditional pressure gradient splitting or the characteristic-based splitting raf,

be chosen to form th!. three-dimensional PNS algorithm. Also, Ilie romhinuiato, of

Eq. (6.13) and Eq. (6.14) provides a three-dimensional TLNS solver.

To assess the numerical efficiency of these three-dimensional algorithms, the

supersonic flow through a 150 expanding three-dimensional nozzle wilh rectangular

cross-sections was chosen for numericai experiments. The nozzle geometry is shown

in Fig. 76 and the grds on the inlet plane and the side wall surface are shown in
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Fig. 77. A constant Mach number of 1.2 and zero contravariant veloc..ies of V and W

were imposed at the inlet. The flow was assumed laminar and the Reynolds number

was taken to be l10 based on the inlet hydraulic radius and inflow properties.

The numerical experiments were done for both the three-dimensional PNS and

TLNS algorithms with approximate factorization. Typical convergence curves for

the PNS algorithm are shown in Fig. 78. As we can see, due to the additional

approximate factorization of the left hand side operator, the quadratic convergence

in two-dimensional PNS procedures cannot be obtained for the three-dimenrional

PNS solver. The optimum CFL number for this . 3C is 20 and this results in 300

local iterations to reach 7 orders of magnitude reduction in the L-2 norm. But

acceptable convergence (5 orders reduction in the L-2 norm) can be achieved inl 40

iterations. However, this time-iterative three-dimensional PNS algorithm has been

found to be very robust and is insensitive to grid-stretching in the C direction.

The convergence for the three-dimensional TLNS procedure is shown in F:g. 79

for a optimum CFL number of 20. The initial conditions for this calculf-tion were

obtained from the corresponding converged (5 orders of magnitude reduction in

the L-2 norm at each cross-plane) PNS solutions. As is seen, for 300 iterations,

the L-2 norm drops 7 orders of magnitude, which is about the same rate as a

two-dimensional central-differenced ADI solver, as we predicted from the stability

analysis given in Section 6.2.1.

0.3 Flowfleld Predictions

The test case for three-dimensional flowfleld predictions wa.', the supersonic

flow through a three-dimensional nozzle with rectangular cross-se.tions is shown in

Fig. 80. The wall contour of this nozzle was chosen to be the same as that of the

272 : I axisymmetric contoured nozzle previously given. This nozzle has a constant

width of 30 mm. in the y direction. Dut o the symmetrr conditions, ortly onel
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Figure 77 5 x 30 x 30 grid of 150 expanding 3-D nozzle for convrgence test
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quadrant on the cross-section need to be calculated.

The 75 x 30 x 30 grid system with 75 in the x-direction and 30 x 30 on one

quadrant of the cross-plane is shown in Figs. 81-82. Figure 81 shows the grid on

the side wall of the nozzle. As is seen, a strong clustering near the top is chosen to

resolve the boundary layer. Typical grids on the cross-planes are shown in Fig. 82

for both the inlet and exit planes. This figure also shows strong stretching near the

side wall and the top due to the boundary layers in the y and z directions.

The inlet Mach number was assumed to be uniformly 1.02 and the gas prop-

erties described in Section 3.6 were imposed at the inlet. This resulted in a nozzle

Reynolds number based on the throat hydraulic radius of 1.5 x 101 and laminar

flow was assumed. The PNS procedure, Eq. (6.13), was utilized to perform the

calculation.

The flowfield results are shown at several locations indicated in Fig. 83. The

computed Mach number contours at locations A and B are shown in Fig. 84. This

figure shows quite different results from those of the axisymmetric calculations pre-

sented in previous chapters due to the three-dimensionality. Although not showii

here, these Mach number contours are more similar to corresponding planar two-

dimensional results. The wiggles of the contours near the exit and the center plan.

are possibly due to insufficient grid resolution and the reflection of a weak ohlique

shock at the center plane.

The streamwise velocity contours on several cross-planes (indicated iii F;g. 93

as locations C, D, E, and F) are shown in Figs. 85-87. In these figures, the growi,,g

of the boundary layer thickness near the side wall and the top is clearly shown.

Figurp- 88-90 show the cross-stream velocity vector plots at locations C, D, E, and

F. Secondary flow patterns and the development of vortices of the three-dimensional

houndary layer near the side wall and the top are observed. The secondary flow
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D- Dsection

C .C section

Figure 85. Streamwise velocity contours at location C and D
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E--E section

Figure 86. Streamwisep e' e.ittours it location E
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F-F section

Figure 87. Streamwise veiocity contours at location F
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patterns adjacent to the side walls as shown in Figs. 89 and 90 also explains why

the boundiry layer along the side wall is thicker near the center plane.



CHAPTER 7

SUMMARY

Implicit time-dependent schemes have been successfully applied to solve the

compressible thin-layer Navier-Stokes equations in multi-dimensions. Preliminary

applications of the implicit algorithm to the one-dimensional Euler equations were

studied by using spatial discretizations based on both central-differencing and flux-

vector splitting upwind-differencing. Both differencing methods were shown to give

rapid convergence and accurate solutions. The Fourier stability analysis has been

studied for either differencing method. The results were shown to provide useful

information about the convergence criteria. In particular, the explicit-like CFL lim-

itation of the one-dimensional upwind scheme when using approximate Jacobians

was successfully predicted from stability analysis and later on confirmed by nu-

inerical experiments. The preparatory investigations on one-dimensional flows also

provide informative results that are extendible to multi-dimensions.

For two-dimensional calculations, the ADI scheme based on central-differencing

was formulated to solve the TLNS equations in a cylindrical coordinate system.

The effectiveness of this ADI scheme was tested by calculating typical subsonic,

transonic, and supersonic flows through nozzles. The results showed that the con-

vergence rates of subsonic and transonic cases are slow (when compared to one-

dimensional calculations) but acceptable. When the flow is predominantly super-

sonic, the ADI scheme has proven to be inefficient and sometimes even unstable.

Based upon the physical character of viscous supersonic flows, a hybrid dis-

cretization composed of central differencing in the streamwise direction and second-
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order upwinding in the cross-stream direction was proposed. Stability analyses on

a modeled' equation were considered for the fully implicit and three approximate

factorization procedures based on this hybrid discretization scheme. The results

showed that all four algorithms are unconditionally stable for the Burger's equation.

Further, the line-relaxation version of the DDADI algorithm gives the eigenvalues

of the amplification matrix that approach the fully implicit limit.

On the basis of encouraging stability results, four algorithms indicated above

were then applied to solve the TLNS equations for flows through nozzles. Of the

three approximate techniques, the DDADI scheme suggested by Lombard tl9 is

shown to require the least number of iterations, but in terms of CPU time, the

PNS-ADI scheme developed in this study is as fast as the DDADI scheme. The

standard ADI factorization arising from traditional ADI schemes 18,9,101 proves to

be the most inefficient in terms of both the number of iterations and the CPU time

required. The direct method devised from the physics of high Reynolds number

viscous flows seems to be particularly suited for supersonic problems, but rapid

convergence of the DDADI and the PNS-ADI schemes allows them to surpass the

direct method in terms of CPU time required. However, the direct method has

proven to be more robust than any approximate schemes by noting that the CFL

number can be as high as 1010 without losing stability. Numerical experiments

regarding boundary conditions and Jacobian matrices have indicated that implicit

boundary conditions toge er with true Jacobians of the split flux play a decisive

role on convergence.

The solutions of present upwind-central differencing algorithms were compared

to those of MOC calculations, excellent agreements on the wall pressure distribution

and Mach number contours were demonstrated.
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For the first time, proper downstream boundary conditions are applied for

the subsonic portion of the outflow. These downstream boundary conditions were

shown to be capable of allowing supersonic solutions to respond to nozzle back

pressure conditions as they should do in realistic situation. The calculations with

recirculation and reentry flows at the exit plane caused no difficulty, and the results

showed that different exit pressures would alter the nozzle boundary layer charac-

teristics near the exit plane. The extrapolation conditions that are normally used

were shown to give solutions corresponding to one specific back pressure condition.

A series of results showing the effects of variations in back pressures, wall tempera-

tures, and nozzle Reynolds numbers are given for both a conical nozzle and a high

expansion ratio contoured nozzle. The effects of turbulence on supersonic nozzle

flows with separation were investigated by solving the Reynolds averaged Navier-

Stokes equations with the Baldwin and Lomax model. The global characteristics of

turbulent flows were properly resolved by using this algebraic turbulence model.

The results of testing on the global mass conservation indicate that global

mass errors can be kept below 1% when fully conservative form is used, while quasi

conservative form may give a global error as large as 30% even in flowflelds without

discontinuities.

Along with the development of Navier-Stokes algorithms, the parabolized pro-

cedures were also investigated. Unlike the traditional approach, the PNS proerlcire

was obtained from the time-dependent general flux-vector split TLNS equlm,16on.,

for which the 9tream% .e flux vector has been split into two parts corrcpondlinig

to downstream and upstream characteristics. By omitting the parts with upstream

characteristics, the whole equation set was made parabolic in the streamwise di-

rection. With this approach, a distinct PNS formulation can be obtained for each

type of flux-vector splitting considered. Two examples were chosen for demonstra-

M --



209

tion. The traditional PNS formulation is obtained by using a pressure gradient

splitting. t'he use of characteristic-based flux splitting yields a PNS algorithm that

includes only the downstream characteristics. Stability results showed that this

characteristic-based PNS algorithm is stable for space-marching and numerical re-

sults indicated that it provides solutions that are identical to the classical pressure

gradient split PNS formulation and in excellent agreement with the TLNS solutions.

One advantage of the present PNS algorithm when compared to non-iterative

space-marching procedures is that the current approach requires no safety factor.

Comparisons of the pressure gradient splitting PNS calculations with the TLNS

solutions show that the introduction of a safety factor deteriorates the solution

accuracy. The necessary local iterations on each t plane for the time-iterative PNS

algorithm result in more computational time than the traditional non-iterative PNS

procedure. However, it has been shown that this CPU time deficit is partially offset

in that the local iterations allow the f derivative to be formulated in a conservative

form so that variable step sizes in t can be used.

The global pressure iteration procedure in the traditional PNS thppvoaches has

been interpreted as a TLNS procedure. These mathematically and phy3ically well-

posed TLNS procedures based on approximate factorization are sugt.st',; instead of

the tradit'.nal global pressure iteration procedures based on an arbitrary relaxation

of the pressure field.

Numerical algorithms for computing viscous swirling nozzle flows have also lref-i

studied by using time-iterative implicit schemes. The implicit ADI and the PNS-

ADI algorithms are utilized to solve transonic and supersonic swirling flows, respec-

tively. These algorithms prove to be equally efficient for swirling two-dimensional

calculations. The combined effects of viscosity and swirling on the flowfield and

the integral nozzle performance are investigated for transonic and supersonic flows
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through mild to high expansion ratio nozzles. Viscous calculations are performed for

three nozzle geometries previously investigated by Dutton 1341. These results vali-

date the inviscid assumptions for high Reynolds number flows and show how rapidly

nozzle performance deteriorates with the Reynolds number. For the high expansion

ratio contoured nozzle and the plug nozzle, the combined effects of swirling and

viscosity have significant influence on the flowfields and the nozzle performance.

Finally, the algorithms developed for axisymmetric two-dimensional flows are

extended to solve the three-dimensional TLNS equations. These three-dimensional

algorithms are based upon the DDADI splitting for the streamwise flux vector arid

an additional approximate factorization of the left hand side operator. The optimum

CFL number reduces to the order of 10 and it gives slow convergence due to this

approximate factorization. Both the PNS and TLNS procedures are formulated for

three-dimensional calculations. Typically, acceptable convergence can be achieved

by 40 local iterations for the PNS algorithm. Although this convergence rate is not

competitive with that of two-dimensional algorithms, these three-dimensional algo-

rithms Drove to be robust and are insensitive to grid-stretching along the streamwise

direction.

As a final comment, although all the results shown in this study are computa-

tions of internal flowfields of nozzles, all numerical algorithms developed here are

applicable to external flows as well.



BIBLIOGRAPHY

1. Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid

Flow, Vol. 1, Ronald Press, New York, 1953.

2. Schlichting, H., Boundary Layer Theory, 7th ed., translated by J. Kestin, M-c-

Graw Hill, New York, 1979.

3. Anderson, D. A., Tannehil!, J. C., and Pletcher, R. H., Computational Fluid

,lechanics and Heat Transfer, McGraw Hill Book Co., New York, 1984.

4. Hoffman, R. J., Hetrick, M. A. Jr., Nickerson, G. R., and Jarossy, F. J., Plume

Contamination Effects Prediction: CONTAM III Computer Program- Vols. 1,

II and III, Science Applications Inc., AFRPL-TR-82-033, December 1982.

S. Kushida, R., Hermel, J., Apfel, S., and Zydowicz, M., "Performance of High-

Area-Ratio Nozzle for a Small Rocket Thruster," J. P'ropulsion and Power,

Vol.3, July-August 1987, pp.329-333.

6. Moretti, G., Abbett, M., "A Time-Dependent Computational Method for Blunt

Body Flows," AIAA J., Vol. 4, 1966, pp.2136-2141.

7. MacCormack, R. W., "The Effect of Viscosity in Hypervelocity Imipact Cra-

tering," AIAA Paper 69-354, Cincinnati, Ohio, 1969.

8. Beam, R. M. and Warming, R. F., "An Implicit Finite-Difference Algorithm

for Hyperbolic System in Conservation Law Form," J. of Comp. Phys., Vol.

22, 1976, pp.87-100.

9. Beam, R. M. and Warming, R. F., "An Implicit Factored Scheme for the Com-

pressible Navier-Stokes Equations," AIAA J., Vol. 16, 1978, pp. 393-401.

10. Briley, W. R. and McDonald H., "On the Structure and Use of Linearized Block

Implicit Schemes," J. of Comp. Phys.. Vol.34, 1980, pp. 54-77.



212

11. Steger, J. L., "Implicit Finite-Difference Simulation of Flow about Arbitrary

Geometries with Application to Airfoils," AIAA Paper 77-665, Albuquerque,

New Mexico, 1977.

12. Baldwin, B. S. and Lomax, H., "Thin Layer Approximations and Algebraic

Model for aeparated Turbulent Flows," AIAA Paper 78-257, 1978.

13. Pulliam, T. H., "Euler and Thin-Layer Navier-Stokes Codes: ARC2D,

ARC3D," Univ. of Tennessee Space Institute, Pub. E02-4005-023-84, 1984.

4. Lombard, C. K., Oliger, J., Yang, J. Y., and Davy, W. C., "Conservative Supra-

Char&cteri:tics Method for Splitting the Hyperbolic Systems of Gasdynamics

with Computed Boundaries for Real and Perfect Gases," AIAA Paper 82-0837,

Jtune 1982.

15. MacCormack, R. W., "Current Status of Numerical Solutions of the Navier-

Stokes Equations," AIAA Paper 85-0032, Jan. 1985.

16. Steger, J. L., Warming, R. F., "Flux Vector Splitting of the Inviscid Gas Dy-

namic Equations with Appiication to Finite Difference Methods," J. Comp.

Phys., Vol. 40, 1981, pp.263-293.

17. Chakravarthy, S. R., "Relaxation Methods for Unfactored Implicit Upwind

Schemes," AIAA Paper 84-0165, Jan. 1984.

18. Yoon, S. and Jameson, A.,"An LU-SSOR Scheme for the Euler and Navier-

Stokes Equations," AIAA Paper 87-0600, Jan. 1987.

19. Lombard, C. K., Venkatapathy, E., and Bardina, J., "Universal Single Level

Implicit Algorithm for Gasdynamics," AIAA Paper 84-1533, June 1984.

20. Chang, C.-L., Kronzon, Y., Merkle, C. L., "Time-Iterative Solutions of Viscous

Supersonic Flows," AIAA Paper 87-1289, Jun. 1987.

21. Thomas, J. L. and Walters, R. W., "Upwind Relaxation Algoritlhn for the

Navier-Stokes Equations," AIAA J., Vol. 25, April 1987, pp.527-534.



213

22. van Leer, 3. "Towards the Ultimate Conservative Difference Sclheme IV. .,

New Approach to Numerical Convection," J. Cornp. Pliys., Vol. 23, 1977,

pp.276-299.

23. Newsome, R. W., Walters, R. W., and Thomas, J. L., "An Efficient Iteration

Strategy for Upwind/Relaxation Solutions to the Thin-Layer Navier-Stokes

Equations," AIAA Paper 87-1113, June 1987.

24. Vichnevetsky, R. and Bowles, J. B., Fourier Analysis of Numerical Approzsma.

tions of Hyperbolic Equations, SIAM studies in Applied Mathematics, 1982.

25. Shirazi, S. A. and Truman, C. R., "Comparison of Algebraic Turbulence Models

for PNS Predictions of Supersonic Flow past a Sphere-Cone," AIAA Paper 87-

0544, Jan. 1987.

26. Vigneron, Y. C., Rackich, J. V., and Tannehill, J. C., "Calculation of Super-

sonic Viscous Flow over Delta Wings with Sharp Subsonic Leading Edges,"

AIAA Paper 78-1137, .July 1978.

27. Lawrence, S. L. and Tannehill, J. C., "An Upwind Algorithm for the Parabo-

lized Navier-Stokes Equations," AIAA Paper 86-1117, May 1986.

28. Power, G. D. and Anderson, 0. L., "An Assessment of a Parabolic Analysis for

Axisymmetric Internal Flows in Rocket and Turbomachinery Ducts," AIAA

Paper 86-1598, June 1986.

29. Gielda, T. and McRae, D., "An Accurate, Stable, Explicit, Parabolized Navier-

Stokes Solver for High Speed Flows," AIAA Paper 86-1116, May 1986.

30. Buckley, P. L., Craig, R. R., Davis, D. L., and Schwartzkopf, K. G., "The

Design and Combustion Performance of Practical Swirlers for Integral Rockct

/Ramjets," AIAA J., Vol. 21, May 1983, pp. 733-740.



214

31. Carpenter, P. W. and Johannesen, N. H.,"An Extension of One-Dimensional

Theory' to Inviscid Swirling Flow Through Choked Nozzles," Aeronautical

Quarterly, Vol. 26, May 1975, pp. 71-87.

32. Kornblum, B. T., Thompson, H. D., and Hoffman, J. D.,"An Analytical In-

vestigation of Swirl on Annular Propulsive Nozzles," J. Propulsion and Power,

Vol. 2, March-April 1986, pp. 155-160.

33. oilffmaa, J. D., Thompson, H. D., and Marcum, D. L., "An Analytical In-

vestigat;on of the Effects of Swirler Design on the Performance of Annular

PropulsI;ve Nozzles," AIAA Paper 86-0587, Jan. 1986.

34. Dutton, J. C., "Swirling Supersonic Nozzle Flow," J. Propulsion and Power,

Vol. 3, No. 4, 1987, pp. 342-349.

35. Vinokur, M., "Conservation Equations of Gas-Dynamics in Curvilinear Coor-

dinate system,"J. Comp. Phys., Vol. 14, 1974, pp.105-125.

36. Rai, MI. M. and Chaussee, D. S., "New Implicit Schemes arid Implicit boundary

conditions," AIAA Paper 83-0123, Jan. 1983.

37. Chakravarthy, S. R., "Euler Equations-Implicit Schemes and Implicit Boundary

Conditions," AIAA J., Vol. 21, 1982, pp. 1565-1571.

38. Hildebrand, F. B., Methods of Applied Mathematics 2nd. ed. Prentice-allal

Inc., Englewood Cliffs, New Jersey, 1965, pp.19-22.

39. Pulliam, T. H. Steger, J. L., "Recent Improvements in Efficiency, Accuracy,

and Convergence for Implicit Approximate Factorization Algorithms," AIAA

paper 85-0360, Jan. 1985.

40. Jespersen, D. C. and Pulliam, T. H., "Flux Vector Splitting and Approximate

Newton Methods,"AIAA Paper, 83-1899, July 1983.



215

41. Buning, P. G. and Steger, J. L., "Solution of Two-Dimensional Euler Equa-

tion with Generalized Coordinat. Transfcrmation Using Flux Vector Splitting,"

AIAA Paper 82-09 11, June 1982.

42. Merkle, C. L. and Athavdle, M., "Time-Accurate Unsteady Incompressible

Flow Algorithms Based on Artificial Compressibility," AIAA Paper 87-1137,

Jun. 1987.

43. Schiff, L. B. and Steger, J. L., "Numerical Sol'itions of Steady Supersonic

Viscous Flow. AIAA Paper 79-0130, Jan. 1979.

44. Rackich, J. V., "Iterative PN3 Method for Attached Flows with Upstream

Influence," AIAA Paper 83-1955, Danvers, Mass., 1983.

45. Lin, A. and Rubin, S. G., "Three Dimensional Superscnic Viscous Flow over a

Cone at Incidence," AIA,^ J., Vol. 20, No.11., 1982, pp.l 5 0 0-l50 7 .

46. Davis, R. T., Barnett, M. and Rakich, J. V., "The Calcuation of Supersonic

Visco's Flow Using the Parabolized Navier-Stokes Equations," Computers 8

Fluids, Vol. 14, No. 3, 1986, pp.197-224.

47. Barnett, M. and Davis, R. T., "A Procedure for the Calculation of Supersonic

Flows with Strong Viscous-Inviscid Interaction," AIAA Paper 85-0166, Jan.

1985.

48. Thompson, D. S. and Anderson, D. A., "A Pseudco-Unsteady Approach -ot

Predicting Steady Supersonic Flows," AIAA Paper 87-054 1, Jan. 1937.



VITA

Chau-Lyan Chang was born July 4, 1958, in Taipei, Taiwan, The Republic of

China. He received a B.S. degree in Mechanical Engineering in June 1980 and an

M.S. degree in Mechanical Engineering in June 1982 from National Taiwan Univer-

sity. From October 1982 to August 1984, the author was a Mechanical Engineer

during a two-year military service for the Navy, The Republic of China. From

September 1984 to the present, he has been employed as a Research Assistant by

the Department of Mechanical Engineering, The Pennsylvania State University.


